On the numerical approximation and computation of minimal surface continua bounded by one-parameter families of polygonal contours

Abstract Minimal surfaces bounded by a polygon Γ ⊂ R q (q ≥ 2) correspond in a one-to-one manner to the critical points of Shiffman's function θ. For arbitrary, but fixed polygons this function was investigated numerically by Hinze (1996). The present work extends these results to classes of polygons Γ = Γ(α), where α varies in certain subsets of finite-dimensional spaces the dimensions of which depend on the number of vertices of the polygon Γ. In the numerical part, investigations on the bifurcation process of one-parameter families of polygonal approximations of three well-known contour families are presented.

[1]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[2]  M. Shiffman ON DIRICHLET'S PRINCIPLE , 1953 .

[3]  Takuya Tsuchiya,et al.  A note on discrete solutions of the Plateau problem , 1990 .

[4]  Michael Hinze On the Numerical Treatment of Quasiminimal Surfaces , 1993, IMPACT Comput. Sci. Eng..

[5]  Takuya Tsuchiya,et al.  On two methods for approximating minimal surfaces in parametric form , 1986 .

[6]  M. Hinze On the numerical approximation of unstable minimal surfaces with polygonal boundaries , 1996 .

[7]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[8]  Kenneth A. Brakke,et al.  The Surface Evolver and the stability of liquid surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  P. Deuflhard,et al.  Efficient numerical path following beyond critical points , 1987 .

[10]  Friedrich Sauvigny On the Morse index of minimal surfaces in ℝp with polygonal boundaries , 1985 .

[11]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[12]  Ein Eindeutigkeitssatz für Minimalflächen im Rp mit polygonalem Rand. , 1985 .

[13]  On the classification of unstable minimal surfaces with polygonal boundaries , 1955 .

[14]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[15]  J. Nitsche Contours bounding at least three solutions of Plateau's problem , 1968 .

[16]  M. Beeson,et al.  The cusp catastrophe of thom in the bifurcation of minimal surfaces , 1984 .

[17]  Eine bemerkung zu den Marx-Shiffmanschen Minimalvektoren bei polygonen , 1981 .

[18]  Erhard Heinz Minimalflächen mit polygonalem Rand , 1983 .

[19]  Erhard Heinz Über eine Verallgemeinerung des Plateauschen Problems , 1979 .

[20]  J. Hutchinson Computing conformal maps and minimal surfaces , 1991 .

[21]  Friedrich Sauvigny Die zweite Variation von Minimalflächen im ℝp mit polygonalem Rand , 1985 .

[22]  Gerhard Dziuk,et al.  On the approximation of unstable parametric minimal surfaces , 1996 .

[23]  J. Douglas Solution of the problem of Plateau , 1931 .

[24]  Joachim Büch Bifurkation von Minimalflächen und elementare Katastrophen , 1986 .

[25]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[26]  Takuya Tsuchiya,et al.  Discrete solution of the Plateau problem and its convergence , 1987 .