Novel Flexible Artificial Magnetic Conductor

A novel flexible uniplanar AMC design is presented. An AMC prototype is manufactured using laser micromachining and it is characterized under flat and bent conditions by measuring its reflection coefficient phase in an anechoic chamber. The designed prototype shows broad AMC operation bandwidth (6.96% and higher) and polarization angle independency. Its angular stability margin, when operating under oblique incidence, is also tested obtaining <path id="x38" d="M249 635q70 0 116 -43t46 -105q0 -46 -28 -80q-22 -25 -80 -64q62 -35 97 -75t35 -99q0 -81 -63 -131t-135 -50q-83 0 -137.5 45.5t-54.5 123.5q0 52 45 95q29 28 89 64q-109 62 -109 155q0 66 50.5 115t128.5 49zM238 603q-42 0 -67.5 -31t-25.5 -72q0 -50 32.5 -79.5 t98.5 -62.5q61 48 61 124q0 59 -29.5 90t-69.5 31zM248 20q46 0 76.5 33.5t30.5 89.5q0 50 -39 85.5t-110 71.5q-81 -54 -81 -137q0 -67 35.5 -105t87.5 -38z"/> as limit for a 14.4 cm × 14.4 cm prototype.

[1]  Tatsuo Itoh,et al.  A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit , 1999 .

[2]  M. Kivikoski,et al.  WEBGA - wearable electromagnetic band-gap antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[3]  Y. Álvarez-López,et al.  A Novel Approach for RCS Reduction Using a Combination of Artificial Magnetic Conductors , 2010 .

[4]  Heung-Sik Tae,et al.  Comparative Study on Various Artficial Magnetic Conductors for Low-Profile Antenna , 2006 .

[5]  Yahya Rahmat-Samii,et al.  Textile antennas: effects of antenna bending on input matching and impedance bandwidth , 2006, IEEE Aerospace and Electronic Systems Magazine.

[6]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[7]  H. Yang,et al.  Radiation Characteristics of a Microstrip Patch Over an Electromagnetic Bandgap Surface , 2007, IEEE Transactions on Antennas and Propagation.

[8]  K. Sarabandi,et al.  Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate , 2004, IEEE Transactions on Antennas and Propagation.

[9]  Sylvain Collardey,et al.  Dual-band CPW-fed G-antenna using an EBG structure , 2010, 2010 Loughborough Antennas & Propagation Conference.

[10]  Eva Rajo-Iglesias,et al.  BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES , 2009 .

[11]  Atef Z. Elsherbeni,et al.  COMPACT ARTIFICIAL MAGNETIC CONDUCTOR DESIGNS USING PLANAR SQUARE SPIRAL GEOMETRIES , 2007 .

[12]  A. Hoorfar,et al.  Small dipole-antenna near Peano high-impedance surfaces , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[13]  F. Las-Heras,et al.  Planar Artificial Magnetic Conductor: Design and Characterization Setup in the RFID SHF Band , 2009 .

[14]  D. Werner,et al.  The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[15]  G. Manara,et al.  Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces , 2002, IEEE Antennas and Wireless Propagation Letters.

[16]  Fan Yang,et al.  Electromagnetic Band Gap Structures in Antenna Engineering , 2008 .

[17]  L. Akhoondzadeh-Asl,et al.  Wideband Dipoles on Electromagnetic Bandgap Ground Planes , 2007 .

[18]  Y. Rahmat-Samii,et al.  Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications , 2003 .

[19]  F. Las Heras,et al.  Design of Planar Artificial Magnetic Conductor Ground Plane Using Frequency-Selective Surfaces for Frequencies Below 1 GHz , 2009, IEEE Antennas and Wireless Propagation Letters.

[20]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[21]  N. Engheta,et al.  High impedance metamaterial surfaces using Hilbert-curve inclusions , 2004, IEEE Microwave and Wireless Components Letters.

[22]  Sergei A. Tretyakov,et al.  Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence , 2004 .

[23]  R. Langley,et al.  Dual-Band Wearable Textile Antenna on an EBG Substrate , 2009, IEEE Transactions on Antennas and Propagation.

[24]  F. Las-Heras,et al.  Novel SHF-Band Uniplanar Artificial Magnetic Conductor , 2010, IEEE Antennas and Wireless Propagation Letters.

[25]  R C Hadarig,et al.  Novel Bow-tie–AMC Combination for 5.8-GHz RFID Tags Usable With Metallic Objects , 2010, IEEE Antennas and Wireless Propagation Letters.