Efficient MRF Deformation Model for Non-Rigid Image Matching

[1]  Nassir Navab,et al.  Dense image registration through MRFs and efficient linear programming , 2008, Medical Image Anal..

[2]  Nassir Navab,et al.  Inter and Intra-modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming , 2007, IPMI.

[3]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Nikos Komodakis,et al.  Fast, Approximately Optimal Solutions for Single and Dynamic MRFs , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Ze-Nian Li,et al.  Matching by Linear Programming and Successive Convexification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A. Shekhovtsov,et al.  Efficient MRF Deformation Model for Image Matching ( Version 1 . 50 ) , 2007 .

[7]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[9]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[10]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  Nikos Komodakis,et al.  A new framework for approximate labeling via graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Andrew Zisserman,et al.  Learning Layered Motion Segmentations of Video , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Brendan J. Frey,et al.  A comparison of algorithms for inference and learning in probabilistic graphical models , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[15]  Brendan J. Frey,et al.  Generative Model for Layers of Appearance and Deformation , 2005, AISTATS.

[16]  Joseph Naor,et al.  A Linear Programming Formulation and Approximation Algorithms for the Metric Labeling Problem , 2005, SIAM J. Discret. Math..

[17]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Jon M. Kleinberg,et al.  Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis , 2003, NIPS.

[19]  Martin J. Wainwright,et al.  Exact MAP Estimates by (Hyper)tree Agreement , 2002, NIPS.

[20]  Haiying Liu,et al.  A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations , 2001, MICCAI.

[21]  Venu Madhav Govindu,et al.  MRF solutions for probabilistic optical flow formulations , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[22]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000, Int. J. Imaging Syst. Technol..

[23]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[25]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Zhang,et al.  The mean field theory for image motion estimation , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..