Synchronization in a network of chaotic memristive jerk oscillators

There is a growing attraction to memristive chaotic systems since last decades. This paper provides a complete dynamical analysis of a chaotic memristive jerk system. Complex behavior of this system is studied with the help of equilibrium analysis, state space plots of trajectories, and bifurcation and Lyapunov exponents’ diagrams. The equilibrium analysis reveals that this system can have no equilibrium or two equilibria depending on the value of the parameters. When it has no equilibrium, it’s strange attractor is hidden. The collective behavior of this chaotic oscillator in dynamical networks is investigated by master stability function (MSF) which checks the stability of the synchronization manifold. According to the MSF analysis, the identical network of memristive oscillator belongs to the network type I.

[1]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[2]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[3]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[4]  Averill M. Law,et al.  Simulation Modeling & Analysis , 1991 .

[5]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[6]  Junkang Ni,et al.  Chaotic dynamics in a neural network under electromagnetic radiation , 2018 .

[7]  Guangyi Wang,et al.  A Chaotic Oscillator Based on HP Memristor Model , 2015 .

[8]  Sajad Jafari,et al.  Autonomous Van der Pol–Duffing snap oscillator: analysis, synchronization and applications to real-time image encryption , 2017, International Journal of Dynamics and Control.

[9]  Matjaz Perc,et al.  Chimera states: Effects of different coupling topologies , 2017, 1705.06786.

[10]  Zhong Liu,et al.  Generalized Memory Element and Chaotic Memory System , 2013, Int. J. Bifurc. Chaos.

[11]  Bernabé Linares-Barranco,et al.  Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses , 2009 .

[12]  Jacques Kengne,et al.  A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors , 2018, Chaos, Solitons & Fractals.

[13]  Viet-Thanh Pham,et al.  A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium , 2018 .

[14]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[15]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[16]  S. Schot,et al.  Jerk: The time rate of change of acceleration , 1978 .

[17]  Sajad Jafari,et al.  Effects of different initial conditions on the emergence of chimera states , 2018, Chaos, Solitons & Fractals.

[18]  Viet-Thanh Pham,et al.  Chameleon: the most hidden chaotic flow , 2017, Nonlinear Dynamics.

[19]  Jun Tang,et al.  A review for dynamics of collective behaviors of network of neurons , 2015 .

[20]  Augmentation of dynamical persistence in networks through asymmetric interaction , 2018, EPL (Europhysics Letters).

[21]  Werner Lutzenberger,et al.  Is there chaos in the brain? , 1996, Behavioral and Brain Sciences.

[22]  Sajad Jafari,et al.  Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow , 2019, Appl. Math. Comput..

[23]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[24]  Sajad Jafari,et al.  Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses , 2017 .

[25]  Viet-Thanh Pham,et al.  Taking control of initiated propagating wave in a neuronal network using magnetic radiation , 2018, Appl. Math. Comput..

[26]  Abdul Jalil M. Khalaf,et al.  Wavefront-obstacle interactions and the initiation of reentry in excitable media , 2018, Physica A: Statistical Mechanics and its Applications.

[27]  Christos Volos,et al.  A chaotic system with rounded square equilibrium and with no-equilibrium , 2017 .

[28]  Viet-Thanh Pham,et al.  A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors , 2018 .

[29]  Chongxin Liu,et al.  Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system* , 2017 .

[30]  L. Chua Memristor-The missing circuit element , 1971 .

[31]  Matjaz Perc,et al.  Synchronizability of two neurons with switching in the coupling , 2019, Appl. Math. Comput..

[32]  A. Hurwitz Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt , 1895 .

[33]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[34]  Albert Y. Zomaya Handbook of Nature-Inspired and Innovative Computing - Integrating Classical Models with Emerging Technologies , 2006 .

[35]  Roger V. Gould Collective Action and Network Structure , 1993 .

[36]  Jürgen Kurths,et al.  Emergence of synchronization in multiplex networks of mobile Rössler oscillators. , 2018, Physical review. E.

[37]  Junkang Ni,et al.  An electronic implementation for Morris–Lecar neuron model , 2016 .

[38]  Huagan Wu,et al.  State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium , 2018, Chaos, Solitons & Fractals.

[39]  Sajad Jafari,et al.  Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems , 2018 .

[40]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[41]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[42]  Jacques Kengne,et al.  Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors , 2018 .

[43]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[44]  Sajad Jafari,et al.  A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption , 2018, Analog Integrated Circuits and Signal Processing.

[45]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[46]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[47]  Sajad Jafari,et al.  A new chaotic network model for epilepsy , 2019, Appl. Math. Comput..

[48]  Soumen Majhi,et al.  Chimera states in neuronal networks: A review. , 2019, Physics of life reviews.

[49]  S. Strogatz Exploring complex networks , 2001, Nature.

[50]  Junkang Ni,et al.  Multi-scroll hidden attractors in improved Sprott A system , 2016 .

[51]  Soumen Majhi,et al.  Diffusion induced spiral wave chimeras in ecological system , 2018, The European Physical Journal Special Topics.

[52]  Albert-László Barabási,et al.  Universal resilience patterns in complex networks , 2016, Nature.

[53]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[54]  Sajad Jafari,et al.  Nonstationary chimeras in a neuronal network , 2018, EPL (Europhysics Letters).

[55]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[56]  Sajad Jafari,et al.  Time-delayed chameleon: Analysis, synchronization and FPGA implementation , 2017, Pramana.

[57]  Jacques Kengne,et al.  Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting , 2019, Physics Letters A.

[58]  Ma Jun,et al.  A review for dynamics of collective behaviors of network of neurons , 2015 .

[59]  Julien Clinton Sprott,et al.  Simple chaotic 3D flows with surfaces of equilibria , 2016 .

[60]  Jun Ma,et al.  A review and guidance for pattern selection in spatiotemporal system , 2017 .

[61]  Jacques Kengne,et al.  Reversals of period doubling, coexisting multiple attractors, and offset boosting in a novel memristive diode bridge-based hyperjerk circuit , 2018, Analog Integrated Circuits and Signal Processing.

[62]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[63]  Nikolay V. Kuznetsov,et al.  Hidden chaotic sets in a Hopfield neural system , 2017 .

[64]  Jacques Kengne,et al.  Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors , 2018 .

[65]  Leon O. Chua,et al.  Topological Analysis of Chaotic Solution of a Three-Element Memristive Circuit , 2014, Int. J. Bifurc. Chaos.

[66]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[67]  Jun Tang,et al.  A review for dynamics in neuron and neuronal network , 2017, Nonlinear Dynamics.

[68]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .