On the stability of linear systems with an exact constraint set

AbstractThis paper deals with the stability of the intersection of a given set $$ X\subset \mathbb{R}^{n}$$with the solution, $$F\subset \mathbb{R}^{n}$$, of a given linear system whose coefficients can be arbitrarily perturbed. In the optimization context, the fixed constraint set X can be the solution set of the (possibly nonlinear) system formed by all the exact constraints (e.g., the sign constraints), a discrete subset of $$\mathbb{R}^{n}$$ (as $$ \mathbb{Z}^{n}$$ or { 0,1} n, as it happens in integer or Boolean programming) as well as the intersection of both kind of sets. Conditions are given for the intersection $$F \cap X$$ to remain nonempty (or empty) under sufficiently small perturbations of the data.

[1]  B. D. Craven,et al.  Non-Linear Parametric Optimization (B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer) , 1984 .

[2]  Miguel A. Goberna,et al.  On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .

[3]  Hubertus Th. Jongen,et al.  Semi-infinite optimization: Structure and stability of the feasible set , 1990 .

[4]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems II: Upper Semicontinuity of the Solution Set Mapping , 1997, SIAM J. Optim..

[5]  Marco A. López,et al.  Upper Semicontinuity of the Feasible Set Mapping for Linear Inequality Systems , 2002 .

[6]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[7]  René Henrion,et al.  Regularity and Stability in Nonlinear Semi-Infinite Optimization , 1998 .

[8]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[9]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[10]  Marco A. López,et al.  A Comprehensive Survey of Linear Semi-Infinite Optimization Theory , 1998 .

[11]  Hubertus Th. Jongen,et al.  On Stability and Deformation in Semi-Infinite Optimization , 1998 .

[12]  Nguyen Dinh,et al.  Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..

[13]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[14]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[15]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..