Distance Measure to Cluster Spatiotemporal Scenarios for Strategic Air Traffic Management

Convective weather, recognized as the leading contributor to delays in the National Airspace System, causes demand–capacity imbalance in the airspace. Strategic air traffic management aims to resolve the imbalance for offnominal conditions (for example, convective weather events) through redistributing flows and resources at the strategic timeframe (2–15 h in advance). As a component of scenario-driven strategic air traffic management, this paper develops a multiresolution spatiotemporal distance measure that, combined with standard distance-based clustering algorithms, can be used to group a wide range of possible weather-impact scenarios into a few representative clusters to facilitate corresponding management strategy design. Motivations of this new distance measure, its generation algorithm, and parameter impact analysis are described in detail to facilitate practical implementation and subsequent use in decision support. This multiresolution spatiotemporal distance measure not only addresses the need...

[1]  R. Costanza MODEL GOODNESS OF FIT: A MULTIPLE RESOLUTION PROCEDURE , 1989 .

[2]  Michael S. Nolan,et al.  Fundamentals of Air Traffic Control , 1990 .

[3]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[4]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[5]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[6]  Aidong Zhang,et al.  WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases , 1998, VLDB.

[7]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[8]  Paul R. Cohen,et al.  Multivariate Clustering by Dynamics , 2000, AAAI/IAAI.

[9]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .

[10]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[11]  Xie Yuan-dan,et al.  Survey on Image Segmentation , 2002 .

[12]  kc claffy,et al.  Understanding Internet traffic streams: dragonflies and tortoises , 2002, IEEE Commun. Mag..

[13]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[14]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[15]  R. Shumway Time-frequency clustering and discriminant analysis , 2003 .

[16]  Frank Klawonn,et al.  Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points , 2003, IDA.

[17]  Jimmy Krozel,et al.  A CLUSTER ANALYSIS TO CLASSIFY DAYS IN THE NATIONAL AIRSPACE SYSTEM , 2003 .

[18]  David Moore,et al.  The Spread of the Witty Worm , 2004, IEEE Secur. Priv..

[19]  Eamonn J. Keogh,et al.  Everything you know about Dynamic Time Warping is Wrong , 2004 .

[20]  Robert Gilmore Pontius,et al.  Useful techniques of validation for spatially explicit land-change models , 2004 .

[21]  Yifan Li,et al.  Clustering moving objects , 2004, KDD.

[22]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[23]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[24]  M. Kuhnert,et al.  Comparing Raster Map Comparison Algorithms for Spatial Modeling and Analysis , 2005 .

[25]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[26]  Ee-Peng Lim,et al.  Mining Mobile Group Patterns: A Trajectory-Based Approach , 2005, PAKDD.

[27]  Carlo Ratti,et al.  Cellular Census: Explorations in Urban Data Collection , 2007, IEEE Pervasive Computing.

[28]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[29]  Nikos Pelekis,et al.  Similarity Search in Trajectory Databases , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[30]  A. Saberi,et al.  Designing spatially heterogeneous strategies for control of virus spread. , 2008, IET systems biology.

[31]  Banavar Sridhar,et al.  Short-Term National Airspace System Delay Prediction Using Weather Impacted Traffic Index , 2008 .

[32]  Sandip Roy,et al.  A Scalable Methodology for Evaluating and Designing Coordinated Air-Traffic Flow Management Strategies Under Uncertainty , 2007, IEEE Transactions on Intelligent Transportation Systems.

[33]  David M. W. Powers,et al.  Characterization and evaluation of similarity measures for pairs of clusterings , 2009, Knowledge and Information Systems.

[34]  C. Wanke,et al.  Methodologies of Estimating the Impact of Severe Weather on Airspace Capacity , 2008 .

[35]  Sivan Toledo,et al.  VTrack: accurate, energy-aware road traffic delay estimation using mobile phones , 2009, SenSys '09.

[36]  Anne M. Denton,et al.  Clustering of Time Series Data , 2009, Encyclopedia of Data Warehousing and Mining.

[37]  Gennady L. Andrienko,et al.  Interactive cluster analysis of diverse types of spatiotemporal data , 2010, SKDD.

[38]  Hui Xiong,et al.  Understanding of Internal Clustering Validation Measures , 2010, 2010 IEEE International Conference on Data Mining.

[39]  Sandip Roy,et al.  A Framework for Flow Contingency Management , 2011 .

[40]  Sandip Roy,et al.  Dynamic Queuing Network Model for Flow Contingency Management , 2011 .

[41]  Sandip Roy,et al.  Defining Multi-Resolution Networks for Flow Contingency Management , 2011 .

[42]  Yi Zhou,et al.  A Stochastic Modeling and Analysis Approach to Strategic Traffic Flow Management under Weather Uncertainty , 2011 .

[43]  Sandip Roy,et al.  A Stochastic Spatiotemporal Weather-Impact Simulator: Representative Scenario Selection , 2011 .

[44]  Sandip Roy,et al.  Modeling Air Traffic Demand for a Real-Time Queuing Network Model of the National Airspace System , 2012 .

[45]  Hadi Fanaee-T Spatio-temporal clustering methods classification , 2012 .

[46]  Sandip Roy,et al.  A Decision Support Tool for Flow Contingency Management , 2012 .

[47]  Sandip Roy,et al.  Multivariate Probabilistic Collocation Method for Effective Uncertainty Evaluation With Application to Air Traffic Flow Management , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[48]  Banavar Sridhar,et al.  Classification of Days Using Weather Impacted Traffic in the National Airspace System , 2013 .

[49]  Shin-Lai Tien,et al.  Identifying Representative Weather-Impact Scenarios for Flow Contingency Management , 2013 .

[50]  Yi Zhou,et al.  Dynamic Queuing Network Model for Flow Contingency Management , 2011, IEEE Transactions on Intelligent Transportation Systems.

[51]  Craig Wanke,et al.  Designing Strategic Planning Strategies using Multi-Objective Genetic Algorithms , 2014 .

[52]  Tak-Chung Fu,et al.  Pattern discovery from stock time series using self-organizing maps , 2016 .