Linear Scaling Hierarchical Integration Scheme for the Exchange-Correlation Term in Molecular and Periodic Systems.

An adaptive numerical integration scheme for efficient evaluation of the exchange-correlation term using localized basis functions and atom-centered grids is presented. The method treats molecules and systems with periodic boundary conditions on an equal footing. Its computational efficiency and O(N) scaling with the system size is achieved by a hierarchical spatial grouping of basis functions and grid points using an octree. This allows for an efficient screening of negligible contributions and an optimal use of hardware-optimized matrix-matrix multiplication subroutines, such as BLAS. The implementation of the method within the TURBOMOLE program package demonstrates consistent accuracy and efficiency across molecular and periodic systems.

[1]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[2]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[3]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[4]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[5]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[6]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[7]  Jackson,et al.  Variational mesh for quantum-mechanical simulations. , 1990, Physical review. B, Condensed matter.

[8]  Peter J. Knowles,et al.  Improved radial grids for quadrature in molecular density‐functional calculations , 1996 .

[9]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[10]  Frank Herman,et al.  Improved Statistical Exchange Approximation for Inhomogeneous Many-Electron Systems , 1969 .

[11]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[12]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[13]  Mauro Causà,et al.  Density functional theory in periodic systems using local Gaussian basis sets , 1996 .

[14]  F. Weigend,et al.  Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr , 2003 .

[15]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[16]  John M. Newsam,et al.  Parallel implementation of a mesh‐based density functional electronic structure code , 1995, J. Comput. Chem..

[17]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix , 2000 .

[18]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[19]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[20]  V. I. Lebedev,et al.  Spherical quadrature formulas exact to orders 25–29 , 1977 .

[21]  Multicenter Integration Scheme for Electronic Structure Calculations of Periodic and Nonperiodic Polyatomic Systems , 1999 .

[22]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[23]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[24]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[25]  Parr,et al.  Phase-space approach to the exchange-energy functional of density-functional theory. , 1986, Physical review. A, General physics.

[26]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[27]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[28]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[29]  Michael J Frisch,et al.  Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. , 2006, The Journal of chemical physics.

[30]  Cedillo,et al.  New nonlocal exchange-energy functional from a kinetic-energy-density Padé-approximant model. , 1988, Physical review. A, General physics.

[31]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[32]  Painter,et al.  Pseudospherical integration scheme for electronic-structure calculations. , 1989, Physical review. B, Condensed matter.

[33]  Pérez-Jordá Change of variables for fully numerical electronic-structure calculations that concentrates the grid points in the atomic-core regions and is adequate for fast Fourier transforms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[34]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[35]  Jon Baker,et al.  The effect of grid quality and weight derivatives in density functional calculations , 1994 .

[36]  Bernard Delley High order integration schemes on the unit sphere , 1996 .

[37]  Florian Janetzko,et al.  Parallelization of the deMon2k code , 2006, J. Comput. Chem..

[38]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[39]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[40]  Andreas M Köster,et al.  Numerical integration of exchange-correlation energies and potentials using transformed sparse grids. , 2008, The Journal of chemical physics.

[41]  Gygi Electronic-structure calculations in adaptive coordinates. , 1993, Physical review. B, Condensed matter.

[42]  Shawn T. Brown,et al.  IncDFT: Improving the efficiency of density functional theory using some old tricks , 2005 .

[43]  Roland Lindh,et al.  Molecular integrals by numerical quadrature. I. Radial integration , 2001 .

[44]  A. Savin A combined density functional and configuration interaction method , 1988 .

[45]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[46]  Jon Baker,et al.  Ab initio quantum chemistry on PC-based parallel supercomputers , 2000, Parallel Comput..

[47]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[48]  Benny G. Johnson,et al.  Kohn—Sham density-functional theory within a finite basis set , 1992 .

[49]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[50]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[51]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[52]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .