Inverse p-median problems with variable edge lengths

The inverse p-median problem with variable edge lengths on graphs is to modify the edge lengths at minimum total cost with respect to given modification bounds such that a prespecified set of p vertices becomes a p-median with respect to the new edge lengths. The problem is shown to be strongly $${\mathcal{NP}}$$-hard on general graphs and weakly $${\mathcal{NP}}$$-hard on series-parallel graphs. Therefore, the special case on a tree is considered: It is shown that the inverse 2-median problem with variable edge lengths on trees is solvable in polynomial time. For the special case of a star graph we suggest a linear time algorithm.

[1]  Bezalel Gavish,et al.  Computing the 2-median on tree networks in O(n lg n) time , 1995, Networks.

[2]  Said Salhi,et al.  Discrete Location Theory , 1991 .

[3]  Elisabeth Gassner An inverse approach to convex ordered median problems in trees , 2012, J. Comb. Optim..

[4]  Xiaoguang Yang,et al.  Inverse Center Location Problem on a Tree , 2008, J. Syst. Sci. Complex..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Mao-cheng Cai,et al.  The Complexity Analysis of the Inverse Center Location Problem , 1999, J. Glob. Optim..

[7]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[8]  Philippe L. Toint,et al.  On an instance of the inverse shortest paths problem , 1992, Math. Program..

[9]  Behrooz Alizadeh,et al.  Combinatorial algorithms for inverse absolute and vertex 1‐center location problems on trees , 2011, Networks.

[10]  A. J. Goldman Optimal Center Location in Simple Networks , 1971 .

[11]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[12]  Rainer E. Burkard,et al.  Inverse median problems , 2004, Discret. Optim..

[13]  Rainer E. Burkard,et al.  The inverse 1-median problem on a cycle , 2008, Discret. Optim..

[14]  János Komlós,et al.  Matching nuts and bolts in O(n log n) time , 1996, SODA '96.

[15]  Behrooz Alizadeh,et al.  Inverse median location problems with variable coordinates , 2010, Central Eur. J. Oper. Res..

[16]  Elisabeth Gassner The inverse 1-maxian problem with edge length modification , 2008, J. Comb. Optim..

[17]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[18]  Arie Tamir,et al.  An O(pn2) algorithm for the p-median and related problems on tree graphs , 1996, Oper. Res. Lett..

[19]  Robert Benkoczi,et al.  A New Template for Solving p-Median Problems for Trees in Sub-quadratic Time , 2005, ESA.

[20]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[21]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[22]  Behrooz Alizadeh,et al.  Inverse 1-center location problems with edge length augmentation on trees , 2009, Computing.

[23]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[24]  Rainer E. Burkard,et al.  The inverse Fermat-Weber problem , 2010, Eur. J. Oper. Res..