Arbitrarily small damping allows global output feedback tracking of a class of Euler-Lagrange systems

This paper proposes a new analysis technique called "ISS regulator approach" to show that a simple causal PD controller plus feedforward using only position measurements solves the global output feedback tracking control problem of robot manipulators with arbitrarily small damping. To this end, we first show that a causal PD regulator leads to a global input-to-state stable system with respect to a bounded input disturbance. Then, using this fact we prove that the addition of a feedforward compensation renders the overall error system uniformly globally asymptotically stable. In addition, we present a possible extension of the proposed method to other classes of Euler-Lagrange systems.

[1]  Leonardo Lanari,et al.  A new separation result for a class of quadratic-like systems with application to Euler-Lagrange models , 2003, Autom..

[2]  Roberto Horowitz,et al.  Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators , 1990, Int. J. Robotics Res..

[3]  Antonio Loria,et al.  Global Tracking Control of One Degree of Freedom Euler-Lagrange Systems without Velocity Measurements , 1996 .

[4]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[5]  Rafael Kelly,et al.  PD control with feedforward compensation for robot manipulators: analysis and experimentation , 2001, Robotica.

[6]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[7]  Romeo Ortega,et al.  An observer-based set-point controller for robot manipulators with flexible joints , 1993 .

[8]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[9]  Antonio Loría,et al.  Position feedback global tracking control of EL systems: a state transformation approach , 2002, IEEE Trans. Autom. Control..

[10]  V. Santibanez,et al.  Global asymptotic stability of bounded output feedback tracking control for robot manipulators , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[11]  Liu Hsu,et al.  Control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction using sliding modes , 2007 .

[12]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[13]  R. Kelly A Simple Set-point Robot Controller by Using Only Position Measurements* , 1993 .

[14]  Henk Nijmeijer,et al.  Global regulation of robots using only position measurements , 1993 .

[15]  J. Moreno,et al.  An Adaptive Output Feedback Tracking Controller for Manipulators Subject to Constrained Torques , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[16]  Warren E. Dixon,et al.  Global adaptive output feedback tracking control of robot manipulators , 2000, IEEE Trans. Autom. Control..

[17]  Warren E. Dixon,et al.  Global robust output feedback tracking control of robot manipulators , 2004, Robotica.

[18]  Antonio Loría,et al.  Global Tracking Control of One Degree of Freedom Euler-Lagrange Systems without Velocity Measurements , 1996, Eur. J. Control.

[19]  Zhong-Ping Jiang,et al.  A small-gain control method for nonlinear cascaded systems with dynamic uncertainties , 1997, IEEE Trans. Autom. Control..

[20]  Liu Hsu,et al.  Output-feedback sliding mode control for global asymptotic tracking of uncertain systems using locally exact differentiators , 2006, 2006 American Control Conference.

[21]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .