Fuzzy Inventory Models

The efficient management of inventory requires managers to make decisions on two fundamental questions: (1) how large should an inventory replenishment order be, and (2) when should an inventory replenishment order be placed. These two decisions are integral in the support of an overall inventory management program that typically has the objective of providing a desired level of customer service at a minimal cost. Beginning in 1913 with Harris’s economic order quantity (EOQ)

[1]  K. Das,et al.  Buyer–seller fuzzy inventory model for a deteriorating item with discount , 2004 .

[2]  L. Ouyang,et al.  Analysis of optimal vendor-buyer integrated inventory policy involving defective items , 2006 .

[3]  Manoranjan Maiti,et al.  Two-storage inventory model with lot-size dependent fuzzy lead-time under possibility constraints via genetic algorithm , 2007, Eur. J. Oper. Res..

[4]  Liang-Yuh Ouyang,et al.  THE VIARIABLE LEAD TIME STOCHASTIC INVENTORY MODEL WITH A FUZZY BACKORDER RATE , 2001 .

[5]  Adrijit Goswami,et al.  An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible , 2006, Int. J. Syst. Sci..

[6]  J. Kacprzyk,et al.  Long-term inventory policy-making through fuzzy decision-making models , 1982 .

[7]  D. Petrovic,et al.  Multicriteria ranking of inventory replenishment policies in the presence of uncertainty in customer demand , 2001 .

[8]  Ching-Hsiang Chang,et al.  An elaborative unit cost structure-based fuzzy economic production quantity model , 2006, Math. Comput. Model..

[9]  Manoranjan Maiti,et al.  Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions , 2004, Comput. Oper. Res..

[10]  S. Mondal,et al.  Multi-item fuzzy EOQ models using genetic algorithm , 2003 .

[11]  Manoranjan Maiti,et al.  A single period inventory model with imperfect production and stochastic demand under chance and imprecise constraints , 2008, Eur. J. Oper. Res..

[12]  Robert J. Campbell,et al.  What Customer Orders Really Cost , 1998 .

[13]  Manoranjan Maiti,et al.  Multi-objective fuzzy inventory model with three constraints: a geometric programming approach , 2005, Fuzzy Sets Syst..

[14]  Huey-Ming Lee,et al.  Economic order quantity in fuzzy sense for inventory without backorder model , 1999, Fuzzy Sets Syst..

[15]  James J. Buckley,et al.  Fuzzy Probabilities : New Approach and Applications , 2005 .

[16]  Hiroaki Ishii,et al.  A stochastic inventory problem with fuzzy shortage cost , 1998, Eur. J. Oper. Res..

[17]  Yu-Jen Lin,et al.  A periodic review inventory model involving fuzzy expected demand short and fuzzy backorder rate , 2008, Comput. Ind. Eng..

[18]  Kunhiraman Nair,et al.  Fuzzy models for single-period inventory problem , 2002, Fuzzy Sets Syst..

[19]  Debjani Chakraborty,et al.  An inventory model for single-period products with reordering opportunities under fuzzy demand , 2007, Comput. Math. Appl..

[20]  Liang-Yuh Ouyang,et al.  Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number , 2004 .

[21]  Debjani Chakraborty,et al.  A single-period inventory model with fuzzy random variable demand , 2005, Math. Comput. Model..

[22]  Ming-Feng Yang A two-echelon inventory model with fuzzy annual demand in a supply chain , 2006 .

[23]  Manas Kumar Maiti,et al.  Fuzzy inventory model with two warehouses under possibility measure on fuzzy goal , 2008, Eur. J. Oper. Res..

[24]  C. Kao,et al.  A single-period inventory model with fuzzy demand , 2002 .

[25]  Shiang-Tai Liu,et al.  Fuzzy profit measures for a fuzzy economic order quantity model , 2008 .

[26]  C. Kao,et al.  Lot size-reorder point inventory model with fuzzy demands , 2002 .

[27]  Ping-Teng Chang,et al.  A genetic algorithm for solving a fuzzy economic lot-size scheduling problem , 2006 .

[28]  Jing-Shing Yao,et al.  Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance , 2003, Eur. J. Oper. Res..

[29]  Bradley Kramer,et al.  A Comparative Study of Three Lot‐sizing Methods for the Case of Fuzzy Demand , 1991 .

[30]  Boding Liu Fuzzy criterion models for inventory systems with partial backorders , 1999, Ann. Oper. Res..

[31]  Yu Sang Chang,et al.  A Model for Measuring Stock Depletion Costs , 1967, Oper. Res..

[32]  Rakesh Nagi,et al.  Fuzzy set theory applications in production management research: a literature survey , 1998, J. Intell. Manuf..

[33]  San-Chyi Chang,et al.  Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number , 1999, Fuzzy Sets Syst..

[34]  Adrijit Goswami,et al.  A joint economic-lot-size model for purchaser and vendor in fuzzy sense , 2005 .

[35]  Hung-Chi Chang,et al.  An application of fuzzy sets theory to the EOQ model with imperfect quality items , 2004, Comput. Oper. Res..

[36]  Nirmal Kumar Mandal,et al.  A displayed inventory model with L–R fuzzy number , 2006, Fuzzy Optim. Decis. Mak..

[37]  Debjani Chakraborty,et al.  A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach , 2007 .

[38]  Edward A. Silver,et al.  Operations Research in Inventory Management: A Review and Critique , 1981, Oper. Res..

[39]  Jing-Shing Yao,et al.  A fuzzy stochastic single-period model for cash management , 2006, Eur. J. Oper. Res..

[40]  S. K. Goyal,et al.  Recent trends in modeling of deteriorating inventory , 2001, Eur. J. Oper. Res..

[41]  Jin-Shieh Su,et al.  Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity , 2000, Comput. Oper. Res..

[42]  Adrijit Goswami,et al.  An EOQ model for deteriorating items under trade credit financing in the fuzzy sense , 2007 .

[43]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[44]  Huey-Ming Lee,et al.  Economic reorder point for fuzzy backorder quantity , 1998, Eur. J. Oper. Res..

[45]  Manoranjan Maiti,et al.  An interactive method for inventory control with fuzzy lead-time and dynamic demand , 2005, Eur. J. Oper. Res..

[46]  Nikos Karacapilidis,et al.  Lot Size Scheduling using Fuzzy Numbers , 1995 .

[47]  Hiroaki Ishii,et al.  Some inventory problems with fuzzy shortage cost , 2000, Fuzzy Sets Syst..

[48]  Hung-Chi Chang,et al.  Fuzzy opportunity cost for EOQ model with quality improvement investment , 2003, Int. J. Syst. Sci..

[49]  H. W. Karr A method of estimating spare-part essentiality† , 1958 .

[50]  D. Petrovic,et al.  Fuzzy models for the newsboy problem , 1996 .

[51]  Onur Aköz,et al.  Continuous review inventory control in the presence of fuzzy costs , 2008 .

[52]  Liang-Yuh Ouyang,et al.  Fuzzy inventory model for deteriorating items with permissible delay in payment , 2006, Appl. Math. Comput..

[53]  Joseph R. Biggs,et al.  The Cost of Ordering , 1990 .

[54]  Ping-Feng Pai,et al.  Continuous review reorder point problems in a fuzzy environment , 2003 .

[55]  Nirmal Kumar Mandal,et al.  Multi-item imperfect production lot size model with hybrid number cost parameters , 2006, Appl. Math. Comput..

[56]  Manoranjan Maiti,et al.  A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity , 1997 .

[57]  Shan-Huo Chen,et al.  Backorder Fuzzy Inventory Model under Function Principle , 1996, Inf. Sci..

[58]  S. Kar,et al.  A deteriorating multi-item inventory model with fuzzy costs and resources based on two different defuzzification techniques , 2008 .

[59]  S. H. Chen,et al.  GRADED MEAN INTEGRATION REPRESENTATION OF GENERALIZED FUZZY NUMBER , 1999 .

[60]  Jing-Shing Yao,et al.  Production , Manufacturing and Logistics Fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity , 2003 .

[61]  Ching-Lai Hwang,et al.  Part-period balancing with uncertainty: a fuzzy sets theory approach , 1990 .

[62]  Madan M. Gupta,et al.  Fuzzy mathematical models in engineering and management science , 1988 .

[63]  Debjani Chakraborty,et al.  Continuous review inventory model in mixed fuzzy and stochastic environment , 2007, Appl. Math. Comput..

[64]  Jing-Shing Yao,et al.  Fuzzy economic production for production inventory , 2000, Fuzzy Sets Syst..

[65]  S. P. Sarmah,et al.  An application of fuzzy set theory for supply chain coordination , 2008 .

[66]  D. Wong,et al.  A fuzzy mathematical model for the joint economic lot size problem with multiple price breaks , 1996 .

[67]  Huey-Ming Lee,et al.  Economic production quantity for fuzzy demand quantity, and fuzzy production quantity , 1998, Eur. J. Oper. Res..

[68]  Manoranjan Maiti,et al.  Multi-objective inventory models of deteriorating items with some constraints in a fuzzy environment , 1998, Comput. Oper. Res..

[69]  V. S. S. Yadavalli,et al.  Multi-Item Deterministic Fuzzy inventory Model , 2005, Asia Pac. J. Oper. Res..

[70]  Wansheng Tang,et al.  Fuzzy Economic Order Quantity Inventory Models Without Backordering , 2007 .

[71]  Radivoj Petrovic,et al.  EOQ formula when inventory cost is fuzzy , 1996 .

[72]  James J. Buckley,et al.  Solving fuzzy problems in operations research: inventory control , 2002, Soft Comput..

[73]  Mitsuo Gen,et al.  An application of fuzzy set theory to inventory control models , 1997 .

[74]  Manoranjan Maiti,et al.  Two storage inventory model in a mixed environment , 2007, Fuzzy Optim. Decis. Mak..

[75]  Chih-Hsun Hsieh,et al.  Optimization of fuzzy production inventory models , 2002, Inf. Sci..

[76]  T. Vijayan,et al.  Inventory models with a mixture of backorders and lost sales under fuzzy cost , 2008, Eur. J. Oper. Res..

[77]  Hiroaki Ishii,et al.  Fuzzy inventory problems for perishable commodities , 2002, Eur. J. Oper. Res..

[78]  Zhen Shao,et al.  Fuzzy multi-product constraint newsboy problem , 2006, Appl. Math. Comput..

[79]  Tapan Kumar Roy,et al.  Fuzzy multi-item economic production quantity model under space constraint: A geometric programming approach , 2007, Appl. Math. Comput..

[80]  Liang-Yuh Ouyang,et al.  A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand , 2002, Comput. Oper. Res..

[81]  Evan L. Porteus Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction , 1986, Oper. Res..

[82]  K. S. Park,et al.  Fuzzy-set theoretic interpretation of economic order quantity , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[83]  Steven Nahmias,et al.  Perishable Inventory Theory: A Review , 1982, Oper. Res..

[84]  Liang-Yuh Ouyang,et al.  Fuzzy mixture inventory model involving fuzzy random variable lead time demand and fuzzy total demand , 2006, Eur. J. Oper. Res..

[85]  Manoranjan Maiti,et al.  Fuzzy inventory model with two warehouses under possibility constraints , 2006, Fuzzy Sets Syst..

[86]  B. Samanta,et al.  An inventory control model using fuzzy logic , 2001 .

[87]  S. H. Chen,et al.  FUZZY ECONOMIC PRODUCTION QUANTITY MODEL FOR ITEMS WITH IMPERFECT QUALITY , 2007 .

[88]  Manoranjan Maiti,et al.  Multi-item inventory model with quantity-dependent inventory costs and demand-dependent unit cost under imprecise objective and restrictions: A geometric programming approach , 2000 .