Assessing lean and positional error of individual mature Douglas-fir (Pseudotsuga menziesii) trees using active and passive sensors

There is growing demand for point cloud data that can produce reliable single tree measurements. The most common platforms for obtaining such data are unmanned aircraft systems with passive sensors...

[1]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[2]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[3]  Tomas Brandtberg Automatic individual tree based analysis of high spatial resolution aerial images on naturally regenerated boreal forests , 1999 .

[4]  Juha M. Hyyppae,et al.  Assessment of forest attributes and single-tree segmentation by means of laser scanning , 2000, Defense, Security, and Sensing.

[5]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Chengcui Zhang,et al.  A progressive morphological filter for removing nonground measurements from airborne LIDAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  W. W. Carson,et al.  Accuracy of a high-resolution lidar terrain model under a conifer forest canopy , 2003 .

[8]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[9]  N. Pfeifer,et al.  Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees , 2004 .

[10]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[11]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[12]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[13]  P. Radtke,et al.  Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar , 2006, Forest Science.

[14]  P. Marshall,et al.  Effects of forest roads on the growth of adjacent lodgepole pine trees , 2006 .

[15]  Yi Lin,et al.  A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements , 2010 .

[16]  Yi Lin,et al.  Mini-UAV-Borne LIDAR for Fine-Scale Mapping , 2011, IEEE Geoscience and Remote Sensing Letters.

[17]  Wang Tao,et al.  Dense point cloud extraction from UAV captured images in forest area , 2011, Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services.

[18]  A. J. Rossi,et al.  Abstracted workflow framework with a structure from motion application , 2012, 2012 Western New York Image Processing Workshop.

[19]  Juha Hyyppä,et al.  An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning , 2012, Remote. Sens..

[20]  Arko Lucieer,et al.  Development of a UAV-LiDAR System with Application to Forest Inventory , 2012, Remote. Sens..

[21]  Maggi Kelly,et al.  A New Method for Segmenting Individual Trees from the Lidar Point Cloud , 2012 .

[22]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[23]  Juha Hyyppä,et al.  Tree mapping using airborne, terrestrial and mobile laser scanning – A case study in a heterogeneous urban forest , 2013 .

[24]  Jinqiang Cui,et al.  UAV LiDAR for below-canopy forest surveys , 2013 .

[25]  M. Pierrot-Deseilligny,et al.  A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery , 2013 .

[26]  Wenkai Li,et al.  Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches , 2013, Remote. Sens..

[27]  B. Koch,et al.  UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS – TREE STEM MAPPING IN OPEN STANDS IN COMPARISON TO TERRESTRIAL LASER SCANNER POINT CLOUDS , 2013 .

[28]  Arko Lucieer,et al.  Direct Georeferencing of Ultrahigh-Resolution UAV Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Jordan Miller Estimation of individual tree metrics using structure-from-motion photogrammetry. , 2015 .

[30]  M. Holopainen,et al.  SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR , 2015 .

[31]  L. Wallace,et al.  Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds , 2016 .

[32]  Wuming Zhang,et al.  An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation , 2016, Remote. Sens..

[33]  Sébastien Bauwens,et al.  Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning , 2016 .

[34]  A. R. Proto,et al.  Forest and UAV: a bibliometric review , 2016 .

[35]  Niclas Börlin,et al.  Estimation of Tree Stem Attributes Using Terrestrial Photogrammetry with a Camera Rig , 2016 .

[36]  Michele Dalponte,et al.  Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data , 2016, Methods in ecology and evolution.

[37]  C. Silva,et al.  Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data , 2016 .

[38]  Hamid Hamraz,et al.  Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds , 2016, 1701.00169.

[39]  Pablo Rodríguez-Gonzálvez,et al.  Automatic tree parameter extraction by a Mobile LiDAR System in an urban context , 2018, PloS one.

[40]  David A. Coomes,et al.  Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion , 2019, Remote. Sens..

[41]  John Sessions,et al.  Accurate Geo-Referencing of Trees with No or Inaccurate Terrestrial Location Devices , 2019, Remote. Sens..

[42]  Farid Kendoul,et al.  Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[43]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[44]  Wen Xiao,et al.  INDIVIDUAL TREE DETECTION FROM UAV LIDAR DATA IN A MIXED SPECIES WOODLAND , 2019, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.