Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma

[1]  Zu-Jiang Yu,et al.  Alterations in the human oral microbiome in cholangiocarcinoma , 2022, Military Medical Research.

[2]  Juejin Wang,et al.  Association of gut microbiome and primary liver cancer: A two‐sample Mendelian randomization and case–control study , 2022, Liver international : official journal of the International Association for the Study of the Liver.

[3]  P. Prombutara,et al.  Gut microbiome profiles in Thai healthy pregnant women and its association with types of foods , 2022, BMC Pregnancy and Childbirth.

[4]  Bo Chen,et al.  Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer , 2022, Hepatology International.

[5]  Zixia Lin,et al.  A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma , 2021, Frontiers in Cellular and Infection Microbiology.

[6]  W. Qu,et al.  Association of Gut Microbiota and Metabolites With Disease Progression in Children With Biliary Atresia , 2021, Frontiers in Immunology.

[7]  Y. Pomyen,et al.  Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma , 2021, Scientific Reports.

[8]  J. Xia,et al.  MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights , 2021, Nucleic Acids Res..

[9]  K. Hase,et al.  Profiling of tumour-associated microbiota in human hepatocellular carcinoma , 2021, Scientific Reports.

[10]  Sven Rahmann,et al.  Sustainable data analysis with Snakemake , 2021, F1000Research.

[11]  K. Bonham,et al.  Comparative Analysis of 16S rRNA Gene and Metagenome Sequencing in Pediatric Gut Microbiomes , 2021, bioRxiv.

[12]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[13]  Timothy L. Tickle,et al.  Multivariable association discovery in population-scale meta-omics studies , 2021, bioRxiv.

[14]  N. Chattipakorn,et al.  Association of Chronic Opisthorchis Infestation and Microbiota Alteration on Tumorigenesis in Cholangiocarcinoma , 2020, Clinical and translational gastroenterology.

[15]  Daniel J. Blankenberg,et al.  Community-led, integrated, reproducible multi-omics with anvi’o , 2020, Nature Microbiology.

[16]  Lin Zhou,et al.  Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma , 2020, Genome Medicine.

[17]  P. Manghi,et al.  Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 , 2020, bioRxiv.

[18]  A. Sanyal,et al.  The Commensal Microbe V eillonella as a Marker for Response to an FGF19 Analog in NASH , 2020, Hepatology.

[19]  R. Schwabe,et al.  Gut microbiome in HCC - Mechanisms, diagnosis and therapy. , 2020, Journal of hepatology.

[20]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[21]  E. Vogtmann,et al.  DNA extraction for human microbiome studies: the issue of standardization , 2019, Genome Biology.

[22]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes - a 2019 update , 2019, Nucleic Acids Res..

[23]  Gregory J. Gores,et al.  A global view of hepatocellular carcinoma: trends, risk, prevention and management , 2019, Nature Reviews Gastroenterology & Hepatology.

[24]  Evgeny M. Zdobnov,et al.  ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data , 2019, BMC Bioinformatics.

[25]  Haiyang Li,et al.  Characterization of Gut Microbiota, Bile Acid Metabolism, and Cytokines in Intrahepatic Cholangiocarcinoma , 2019, Hepatology.

[26]  Jacob M. Luber,et al.  Meta’omic analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism , 2019, Nature Medicine.

[27]  Guangxiu Liu,et al.  Relationship between intestinal microbial dysbiosis and primary liver cancer. , 2019, Hepatobiliary & pancreatic diseases international : HBPD INT.

[28]  Lanjuan Li,et al.  Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma , 2018, Gut.

[29]  Christopher Wilks,et al.  Scaling read aligners to hundreds of threads on general-purpose processors , 2017, bioRxiv.

[30]  Y. Pomyen,et al.  Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. , 2017, Cancer cell.

[31]  D. Huson,et al.  SILVA, RDP, Greengenes, NCBI and OTT — how do these taxonomies compare? , 2017, BMC Genomics.

[32]  R. Durbin,et al.  Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly , 2016, bioRxiv.

[33]  N. V. Merzlikin,et al.  Biliary Microbiota, Gallstone Disease and Infection with Opisthorchis felineus , 2016, PLoS neglected tropical diseases.

[34]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[35]  S. Salzberg,et al.  Centrifuge: rapid and sensitive classification of metagenomic sequences , 2016, bioRxiv.

[36]  J. Raes,et al.  Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD , 2016, Gut.

[37]  Bin Tean Teh,et al.  Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis viverrini Associated Cholangiocarcinoma , 2016, EBioMedicine.

[38]  Tanja Woyke,et al.  Metagenomics uncovers gaps in amplicon-based detection of microbial diversity , 2016, Nature Microbiology.

[39]  Ahmed A. Metwally,et al.  Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. , 2016, Biochemical and biophysical research communications.

[40]  T. Chitapanarux,et al.  Risk Factors for the Development of Hepatocellular Carcinoma in Thailand , 2015, Journal of clinical and translational hepatology.

[41]  M. Miwa,et al.  Genetic and environmental determinants of risk for cholangiocarcinoma in Thailand. , 2014, World journal of gastrointestinal pathophysiology.

[42]  Peter B. McGarvey,et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches , 2014, Bioinform..

[43]  Jiro Nakayama,et al.  Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. , 2014, Journal of microbiology and biotechnology.

[44]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[45]  Yan He,et al.  Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons , 2013, BMC Microbiology.

[46]  H. El‐Serag,et al.  Risk factors for cholangiocarcinoma , 2011, Hepatology.

[47]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[48]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[49]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[50]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..