Inductor-free simplified Chua’s circuit only using two-op-amp-based realization

Based on a classical Wien bridge oscillator and a simplified Chua’s diode only using one op-amp realization, an inductor-free simplified Chua’s circuit is presented in this paper. The newly proposed circuit has only two op-amps, three capacitors, and eight resistors and, to our knowledge, is a simplest inductor-free Chua’s circuit. The state equations and their dimensionless equations are mathematically modeled. Through numerical simulations of the mathematical model and hardware experiments, the circuit emulates the dynamical behaviors of a classical Chua’s circuit, e.g., coexisting limit cycle oscillations, limit cycle oscillations, period doubling cascades, coexisting chaotic spiral attractors, chaotic double scrolls and boundary crisis. However, different from the classical Chua’s circuit, the inductor-free simplified Chua’s circuit is divided into a non-dissipative region and two dissipative regions in whole state space, resulting in the occurrence of the hollow double-scroll chaotic attractor. Furthermore, an active band pass filter-based inductor-free simplified Chua’s circuit is extended, and numerical simulations and hardware experiments are performed, from which similar dynamical behaviors are exhibited.

[1]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[2]  Eleonora Bilotta,et al.  Motivating the learning of science topics in secondary school: A constructivist edutainment setting for studying Chaos , 2012, Comput. Educ..

[3]  Holokx A. Albuquerque,et al.  Periodicity detection on the parameter-space of a forced Chua’s circuit , 2012 .

[4]  Ahmed S. Elwakil,et al.  Improved implementation of Chua's chaotic oscillator using current feedback op amp , 2000 .

[5]  Jun Ma,et al.  A time-varying hyperchaotic system and its realization in circuit , 2010 .

[6]  Bishnu Charan Sarkar,et al.  Single amplifier biquad based autonomous electronic oscillators for chaos generation , 2010 .

[7]  Julien Clinton Sprott,et al.  Finding coexisting attractors using amplitude control , 2014 .

[8]  W. Schwarz,et al.  Chaos communications-principles, schemes, and system analysis , 2002, Proc. IEEE.

[9]  Leonardo A. B. Tôrres,et al.  Inductorless Chua's circuit , 2000 .

[10]  I. Raja Mohamed,et al.  Investigation of Chaotic and Strange Nonchaotic Phenomena in Nonautonomous Wien-Bridge Oscillator with Diode Nonlinearity , 2015 .

[11]  K. Thamilmaran,et al.  Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit , 2009 .

[12]  Qingdu Li,et al.  On hidden twin attractors and bifurcation in the Chua’s circuit , 2014 .

[13]  Michael Peter Kennedy,et al.  Robust OP Amp Realization of Chua's Circuit , 1992 .

[14]  G. Zhong,et al.  Experimental confirmation of chaos from Chua's circuit , 1985 .

[15]  Xiaohua Zhu,et al.  Principles of Chaotic Signal Radar , 2007, Int. J. Bifurc. Chaos.

[16]  Hakan Kuntman,et al.  Improved Realization of Mixed-Mode Chaotic Circuit , 2002, Int. J. Bifurc. Chaos.

[17]  Zhong Liu,et al.  Chaotic Analog-to-Information Conversion: Principle and Reconstructability with Parameter Identifiability , 2013, Int. J. Bifurc. Chaos.

[18]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[19]  Ömer Morgül,et al.  Inductorless realisation of Chua oscillator , 1995 .

[20]  Luigi Fortuna,et al.  Chua's Circuit Implementations: Yesterday, Today and Tomorrow , 2009 .

[21]  Zhengdi Zhang,et al.  Non-smooth bifurcations on the bursting oscillations in a dynamic system with two timescales , 2015 .

[22]  Paulo C. Rech,et al.  Theoretical and experimental time series analysis of an inductorless Chua’s circuit , 2007 .

[23]  Ronilson Rocha,et al.  An inductor-free realization of the Chua’s circuit based on electronic analogy , 2009 .

[24]  Ronilson Rocha,et al.  Experimental characterization of nonlinear systems: a real-time evaluation of the analogous Chua’s circuit behavior , 2010 .

[25]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[26]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[27]  Michael Peter Kennedy,et al.  Three steps to chaos. I. Evolution , 1993 .

[28]  M. Komuro Birth and death of the double scroll , 1985, IEEE Conference on Decision and Control.

[29]  Xiao-Song Yang,et al.  Hyperchaos from two coupled Wien‐bridge oscillators , 2008, Int. J. Circuit Theory Appl..

[30]  Bocheng Bao,et al.  Finding hidden attractors in improved memristor-based Chua''s circuit , 2015 .

[31]  Recai Kiliç,et al.  A Practical Guide for Studying Chua's Circuits , 2010 .

[32]  Ronilson Rocha,et al.  The Negative Side of Chua's Circuit Parameter Space: Stability Analysis, Period-Adding, Basin of Attraction Metamorphoses, and Experimental Investigation , 2014, Int. J. Bifurc. Chaos.

[33]  Leon O. Chua,et al.  Double scroll via a two-transistor circuit , 1986 .

[34]  Tanmoy Banerjee,et al.  Single amplifier biquad based inductor-free Chua’s circuit , 2012, 1210.8409.

[35]  Recai Kiliç,et al.  A survey of Wien bridge-based chaotic oscillators: Design and experimental issues , 2008 .