Robust optimal solutions in interval linear programming with forall-exists quantifiers

We introduce a novel kind of robustness in linear programming. A solution x* is called robust optimal if for all realizations of the objective function coefficients and the constraint matrix entries from given interval domains there are appropriate choices of the right-hand side entries from their interval domains such that x* remains optimal. We propose a method to check for robustness of a given point, and also recommend how a suitable candidate can be found. We discuss topological properties of the robust optimal solution set, too. We illustrate applicability of our concept in transportation and nutrition problems. Since not every problem has a robust optimal solution, we introduce also a concept of an approximate robust solution and develop an efficient method; as a side effect, we obtain a simple measure of robustness.

[1]  Milan Hladík On approximation of the best case optimal value in interval linear programming , 2014, Optim. Lett..

[2]  Masahiro Inuiguchi,et al.  Minimax regret solution to linear programming problems with an interval objective function , 1995 .

[3]  Igor Averbakh,et al.  On the complexity of minmax regret linear programming , 2005, Eur. J. Oper. Res..

[4]  Wei Li,et al.  Checking strong optimality of interval linear programming with inequality constraints and nonnegative constraints , 2014, J. Comput. Appl. Math..

[5]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[6]  Milan Hladík,et al.  How to determine basis stability in interval linear programming , 2012, Optimization Letters.

[7]  Virginie Gabrel,et al.  Robustness and duality in linear programming , 2010, J. Oper. Res. Soc..

[8]  Evgenija D. Popova Explicit Description of AE Solution Sets for Parametric Linear Systems , 2012, SIAM J. Matrix Anal. Appl..

[9]  M. Hladík,et al.  New Operator and Method for Solving Real Preconditioned Interval Linear Equations , 2013, SIAM J. Numer. Anal..

[10]  Sebastian Sitarz,et al.  Maximal and supremal tolerances in multiobjective linear programming , 2013, Eur. J. Oper. Res..

[11]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[12]  Evgenija D. Popova,et al.  Inner estimation of the parametric tolerable solution set , 2013, Comput. Math. Appl..

[13]  Milan Hladı´k Weak and strong solvability of interval linear systems of equations and inequalities , 2013 .

[14]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[15]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[16]  S. P. Shary An Interval Linear Tolerance Problem , 2004 .

[17]  A. L. Soyster,et al.  A unifying framework for duality and modeling in robust linear programs , 2013 .

[18]  Yurii Nesterov,et al.  An interior-point method for generalized linear-fractional programming , 1995, Math. Program..

[19]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[20]  Yun-Bin Zhao,et al.  Explicit Reformulations for Robust Optimization Problems with General Uncertainty Sets , 2008, SIAM J. Optim..

[21]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[22]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[23]  Mehdi Allahdadi,et al.  The optimal solution set of the interval linear programming problems , 2012, Optimization Letters.

[24]  A. Neumaier Interval methods for systems of equations , 1990 .

[25]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[26]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[27]  Milan Hladík,et al.  Generalized linear fractional programming under interval uncertainty , 2010, Eur. J. Oper. Res..

[28]  F. Jarre,et al.  An interior-point method for multifractional programs with convex constraints , 1995 .

[29]  Milan Hladík,et al.  Outer enclosures to the parametric AE solution set , 2013, Soft Comput..

[30]  Wei Li,et al.  Necessary and sufficient conditions of some strong optimal solutions to the interval linear programming , 2013 .

[31]  S. Rivaz,et al.  Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients , 2013, Central Eur. J. Oper. Res..

[32]  M. Laguna,et al.  A New Mixed Integer Formulation for the Maximum Regret Problem , 1998 .

[33]  Wei Li,et al.  Strong optimal solutions of interval linear programming , 2013 .

[34]  Milan Hladík,et al.  Complexity of necessary efficiency in interval linear programming and multiobjective linear programming , 2012, Optim. Lett..