Nonlinear programming approach to biaffine matrix inequality problems in multiobjective and structured control

Some nonlinear minimization problems are proposed for obtaining a solution of the biaffine matrix inequality (BMI) problem. An algorithm is also proposed for solving the nonlinear minimization problems. The algorithm can be easily implemented with the existing convex optimization codes. This nonlinear programming approach can be applied to all multiobjective and structured control problems such as the simultaneous stabilization by static or dynamic output feedback, the mixed H/sub 2//H/sub /spl infin// control, and the decentralized control which can be reduced to BMI problems. The effectiveness is illustrated by numerical examples.

[1]  Bor-Sen Chen,et al.  A genetic approach to mixed H/sub 2//H/sub /spl infin// optimal PID control , 1995 .

[2]  T. Shimomura,et al.  Multiobjective control design via successive over-bounding of quadratic terms , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  Pramod P. Khargonekar,et al.  Decentralized control and periodic feedback , 1994, IEEE Trans. Autom. Control..

[4]  Stephen P. Boyd,et al.  Multiobjective H/sub 2//H/sub /spl infin//-optimal control via finite dimensional Q-parametrization and linear matrix inequalities , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[5]  Olvi L. Mangasarian,et al.  The Extended Linear Complementarity Problem , 1995, SIAM J. Matrix Anal. Appl..

[6]  P. Apkarian,et al.  A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  T. Sugie,et al.  BMI global optimization based on branch and bound method taking account of the property of local minima , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[8]  Pierre Apkarian,et al.  Robust control via concave minimization local and global algorithms , 2000, IEEE Trans. Autom. Control..

[9]  Pramod P. Khargonekar,et al.  Randomized algorithms for robust control analysis and synthesis have polynomial complexity , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[11]  G. Papavassilopoulos,et al.  A global optimization approach for the BMI problem , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  T. Iwasaki The dual iteration for fixed order control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[14]  S. R. Searle Generalized Inverse Matrices , 1971 .

[15]  Yong-Yan Cao,et al.  Static output feedback simultaneous stabilization: ILMI approach , 1998 .

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  Hoang Duong Tuan,et al.  LMI-constrained concave programs in robust control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[19]  P. Kabamba,et al.  Simultaneous pole assignment in linear periodic systems by constrained structure feedback , 1989 .

[20]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[21]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[22]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.

[23]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[24]  Ian R. Petersen,et al.  Optimal stabilization of linear systems via decentralized output feedback , 1998, IEEE Trans. Autom. Control..

[25]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[26]  P.,et al.  Randomized algorithms for a certain real /spl mu/ computation problem , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[27]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[28]  Carsten W. Scherer,et al.  Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .

[29]  Patrick L. Odell,et al.  Generalized Inverse Matrices , 1971 .

[30]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[31]  P. Apkarian,et al.  A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[32]  J. Geromel,et al.  Numerical comparison of output feedback design methods , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[33]  B. De Schutter,et al.  The extended linear complementarity problem and linear complementary-slackness systems , 1999, ECC.

[34]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .