Estimation of P(Y < X) for progressively first-failure-censored generalized inverted exponential distribution

ABSTRACT In this article, we consider the problem of estimation of the stress–strength parameter δ = P(Y < X) based on progressively first-failure-censored samples, when X and Y both follow two-parameter generalized inverted exponential distribution with different and unknown shape and scale parameters. The maximum likelihood estimator of δ and its asymptotic confidence interval based on observed Fisher information are constructed. Two parametric bootstrap boot-p and boot-t confidence intervals are proposed. We also apply Markov Chain Monte Carlo techniques to carry out Bayes estimation procedures. Bayes estimate under squared error loss function and the HPD credible interval of δ are obtained using informative and non-informative priors. A Monte Carlo simulation study is carried out for comparing the proposed methods of estimation. Finally, the methods developed are illustrated with a couple of real data examples.

[1]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[2]  Shuo-Jye Wu,et al.  On estimation based on progressive first-failure-censored sampling , 2009, Comput. Stat. Data Anal..

[3]  Sanku Dey,et al.  Generalized inverted exponential distribution under hybrid censoring , 2014 .

[4]  Hare Krishna,et al.  Nakagami distribution as a reliability model under progressive censoring , 2017, Int. J. Syst. Assur. Eng. Manag..

[5]  Uditha Balasooriya,et al.  Failure–censored reliability sampling plans for the exponential distribution , 1995 .

[6]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[7]  Y. Lio,et al.  Estimation of δ=P(X, 2012 .

[8]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[9]  Umesh Singh,et al.  The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data , 2014, 1405.6268.

[10]  Otto Dykstra,et al.  Theory and Technique of Variation Research , 1965 .

[11]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  A. M. Abouammoh,et al.  Reliability estimation of generalized inverted exponential distribution , 2009 .

[14]  Z. Birnbaum,et al.  A Distribution-Free Upper Confidence Bound for $\Pr \{Y < X\}$, Based on Independent Samples of $X$ and $Y$ , 1958 .

[15]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[16]  Hare Krishna,et al.  Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample , 2013 .

[17]  Hare Krishna,et al.  On progressively first failure censored Lindley distribution , 2016, Comput. Stat..

[18]  Augustine C. M. Wong,et al.  A note on inference for P(X  <  Y) for right truncated exponentially distributed data , 2008 .

[19]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[20]  Mohammad Z. Raqab,et al.  Estimation of P(Y < X) for Weibull Distribution Under Progressive Type-II Censoring , 2013 .

[21]  J. D. Church,et al.  The Estimation of Reliability from Stress-Strength Relationships , 1970 .

[22]  Madhulika Dube,et al.  Generalized inverted exponential distribution under progressive first-failure censoring , 2016 .

[23]  Hare Krishna,et al.  Estimation of P(Y < X) in Lindley distribution using progressively first failure censoring , 2015, Int. J. Syst. Assur. Eng. Manag..

[24]  Ahmed A. Soliman,et al.  Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data , 2012, Reliab. Eng. Syst. Saf..

[25]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[26]  Madhulika Dube,et al.  On Randomly Censored Generalized Inverted Exponential Distribution , 2016 .

[27]  U. U. Mueller,et al.  The Stress-Strength Model and Its Generalizations: Theory and Applications , 2004 .

[28]  Sanku Dey,et al.  On progressively censored generalized inverted exponential distribution , 2014 .

[29]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[30]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[31]  Ahmed A. Soliman,et al.  Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data , 2012, Comput. Stat. Data Anal..

[32]  W. R. Buckland,et al.  Theory and Technique of Variation Research. , 1965 .

[33]  Debasis Kundu,et al.  On estimation of R=P(Y, 2012 .