Dynamical behavior and synchronization of chaotic chemical reactors model

In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of this proposed method is proved by Barbalate's lemma. Numerical Simulation is provided for illustration and verification of the proposed method.

[1]  M. Uschold,et al.  Methods and applications , 1953 .

[2]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[3]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  Thermodynamic fluctuations and chemical chaos in a well‐stirred reactor: A master equation analysis , 1993 .

[6]  L. Chua,et al.  Experimental hyperchaos in coupled Chua's circuits , 1994 .

[7]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[8]  Leon O. Chua,et al.  Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation , 1995 .

[9]  P. Arena,et al.  Hyperchaos from cellular neural networks , 1995 .

[10]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[11]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[12]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[13]  F. Baras,et al.  PARTICLE SIMULATION OF CHEMICAL CHAOS , 1996 .

[14]  Saverio Mascolo,et al.  SYNCHRONIZING HIGH DIMENSIONAL CHAOTIC SYSTEMS VIA EIGENVALUE PLACEMENT WITH APPLICATION TO CELLULAR NEURAL NETWORKS , 1999 .

[15]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[16]  An-Pei Wang,et al.  Controlling hyperchaos of the Rossler system , 1999 .

[17]  Silvano Cincotti,et al.  Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..

[18]  Pere Colet,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delay feedback loop , 2003, SPIE OPTO.

[19]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[20]  Henry Leung,et al.  N-scroll chaotic attractors from a general jerk circuit , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[21]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[22]  Xiao-Song Yang,et al.  Chaoticity of some chemical attractors: a computer assisted proof , 2005 .

[23]  Tassos Bountis,et al.  Active Control and Global Synchronization of the Complex Chen and lÜ Systems , 2007, Int. J. Bifurc. Chaos.

[24]  Zuolei Wang,et al.  Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters , 2009 .

[25]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[26]  M. Noorani,et al.  On anti-synchronization of chaotic systems via nonlinear control , 2009 .

[27]  M. M. El-Dessoky,et al.  Adaptive anti-synchronization of different chaotic dynamical systems , 2009 .

[28]  M. M. El-Dessoky,et al.  Synchronization and anti-synchronization of a hyperchaotic Chen system , 2009 .

[29]  Nejib Smaoui,et al.  Synchronization of the unified chaotic systems using a sliding mode controller , 2009 .

[30]  Hendrik Broer,et al.  Dynamical Systems and Chaos , 2010 .

[31]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[32]  H. Kheiri,et al.  Anti-synchronization of the T System with Uncertain Parameters Via Adaptive Control , 2011 .

[33]  Nastaran Vasegh,et al.  Chaos Synchronization of Chemical Models , 2011 .