Fractal Tilings from Iterated Function Systems

A simple, yet unifying method is provided for the construction of tilings by tiles obtained from the attractor of an iterated function system (IFS). Many examples appearing in the literature in ad hoc ways, as well as new examples, can be constructed by this method. These tilings can be used to extend a fractal transformation defined on the attractor of a contractive IFS to a fractal transformation on the entire space upon which the IFS acts.

[1]  Evelyne Lutton,et al.  Fractals in Engineering; New Trends in Theory and Applications , 2006 .

[2]  Valérie Berthé,et al.  Fractal tiles associated with shift radix systems☆ , 2009, Advances in mathematics.

[3]  Shigeki Akiyama,et al.  A Survey on Topological Properties of Tiles Related to Number Systems , 2004 .

[4]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[5]  Andrew Vince,et al.  Fractal Continuation , 2012, 1209.6100.

[6]  Michael F. Barnsley Theory and Applications of Fractal Tops , 2005 .

[7]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[8]  Andrew Vince,et al.  The chaos game on a general iterated function system , 2010, Ergodic Theory and Dynamical Systems.

[9]  Ka-Sing Lau,et al.  Expanding Polynomials and Connectedness of Self-Affine Tiles , 2004, Discret. Comput. Geom..

[10]  Andrew Vince,et al.  Developments in fractal geometry , 2013 .

[11]  Michael F. Barnsley Transformations between Self-Referential Sets , 2009, Am. Math. Mon..

[12]  Ludwig Staiger How Large is the Set of Disjunctive Sequences? , 2002, J. Univers. Comput. Sci..

[13]  Andrew Vince,et al.  Replicating Tessellations , 1993, SIAM J. Discret. Math..

[14]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[15]  C. Bandt,et al.  Fractal Penrose tilings I. Construction and matching rules , 1996 .

[16]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[17]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[18]  Hui Rao,et al.  Dual systems of algebraic iterated function systems , 2014 .

[19]  Mariusz Urbański,et al.  Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets , 2003 .

[20]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[21]  Charles Radin,et al.  Space tilings and substitutions , 1995 .

[22]  Andrew Vince,et al.  Fractal homeomorphism for bi-affine iterated function systems , 2011 .

[23]  Christoph Bandt,et al.  Self-similar sets. V. Integer matrices and fractal tilings of ⁿ , 1991 .

[24]  Götz Gelbrich Crystallographic reptiles , 1994 .

[25]  Michael Baake,et al.  Digit tiling of euclidean space , 2000 .

[26]  Richard Kenyon The construction of self-similar tilings , 1995 .

[27]  C. Bandt,et al.  Fractal Penrose tilings, I. Construction and matching rules , 1996 .

[28]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .