Parameter-Dependent Lyapunov Functions for Linear Systems With Constant Uncertainties

Robust stability of linear time-invariant systems with respect to structured uncertainties is considered. The small gain condition is sufficient to prove robust stability and scalings are typically used to reduce the conservatism of this condition. It is known that if the small gain condition is satisfied with constant scalings then there is a single quadratic Lyapunov function which proves robust stability with respect to all allowable time-varying perturbations. In this technical note we show that if the small gain condition is satisfied with frequency-varying scalings then an explicit parameter dependent Lyapunov function can be constructed to prove robust stability with respect to constant uncertainties. This Lyapunov function has a rational quadratic dependence on the uncertainties.

[1]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[2]  M. Corless Robust stability analysis and controller design with quadratic Lyapunov functions , 1994 .

[3]  K. Poolla,et al.  Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..

[4]  Perry Y. Li,et al.  Passive velocity field control (PVFC). Part I. Geometry and robustness , 2001, IEEE Trans. Autom. Control..

[5]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..

[6]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[7]  Pratibha Mishra,et al.  Advanced Engineering Mathematics , 2013 .

[8]  Calvin H. Wilcox,et al.  Analytical and Computational Methods of Advanced Engineering Mathematics , 1998 .

[9]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions and the Popov criterion in robust analysis and synthesis , 1995, IEEE Trans. Autom. Control..

[10]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[11]  C.E. de Souza,et al.  Bi-quadratic stability of uncertain linear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[12]  Perry Y. Li,et al.  Passive velocity field control (PVFC). Part II. Application to contour following , 2001, IEEE Trans. Autom. Control..

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  Merle C. Potter,et al.  Differential Equations with Linear Algebra , 2009 .

[15]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[16]  Pierre-Alexandre Bliman,et al.  Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[17]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[18]  A. Trofino Robust stability and domain of attraction of uncertain nonlinear systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[20]  C. Scherer,et al.  New robust stability and performance conditions based on parameter dependent multipliers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[21]  Maurício C. de Oliveira,et al.  A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependence , 2005, Syst. Control. Lett..

[22]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[23]  Javier Moreno-Valenzuela,et al.  A robust velocity field control , 2002, IEEE Trans. Control. Syst. Technol..

[24]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[25]  Graziano Chesi Estimating the domain of attraction for uncertain polynomial systems , 2004, Autom..

[26]  Jian Liang Wang,et al.  Stability Analysis and Controller Synthesis for Parameter-Dependent Polynomial Nonlinear Systems , 2007, 2007 American Control Conference.

[27]  Edward B. Saff,et al.  Fundamentals of differential equations and boundary value problems (2. ed.) , 1996 .

[28]  Gary J. Balas Robust control toolbox , 2005 .

[29]  J. Doyle,et al.  Quadratic stability with real and complex perturbations , 1990 .

[30]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[31]  Mi-Ching Tsai,et al.  Real-time NURBS command generators for CNC servo controllers , 2002 .

[32]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[33]  E. Feron,et al.  S-procedure for the analysis of control systems with parametric uncertainties via parameter-dependent Lyapunov functions , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[34]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[35]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[36]  Dennis S. Bernstein,et al.  Parameter-Dependent Lyapunov Functions and the Discrete-Time Popov Criterion for Robust Analysis and Synthesis , 1992, 1992 American Control Conference.

[37]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[38]  Pierre-Alexandre Bliman,et al.  An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..

[39]  Ricardo C. L. F. Oliveira,et al.  LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions , 2006, Syst. Control. Lett..

[40]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[41]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[42]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[43]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[44]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[45]  Weehong Tan,et al.  Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming , 2006 .

[46]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[47]  Tetsuya Iwasaki,et al.  LPV system analysis with quadratic separator , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[48]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[49]  R. Bellman,et al.  An Introduction to Minimax , 1976 .

[50]  Graziano Chesi,et al.  Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[51]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[52]  Tetsuya Iwasaki,et al.  Parameter-dependent Lyapunov function for exact stability analysis of single-parameter dependent LTI systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[53]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[54]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[55]  A. Zinober Variable Structure and Lyapunov Control , 1994 .

[56]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[57]  Ming-Yang Cheng,et al.  Motion Controller Design for Contour-Following Tasks Based on Real-Time Contour Error Estimation , 2007, IEEE Transactions on Industrial Electronics.

[58]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[59]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[60]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..

[61]  Brian D. O. Anderson,et al.  Lyapunov functions for uncertain systems with applications to the stability of time varying systems , 1994 .

[62]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[63]  Richard D. Braatz,et al.  Computational Complexity of , 2007 .

[64]  Perry Y. Li,et al.  Passive velocity field control of mechanical manipulators , 1995, IEEE Trans. Robotics Autom..

[65]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[66]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[67]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[68]  João P. Hespanha,et al.  Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty , 2007, IEEE Transactions on Automatic Control.

[69]  S. Dasgupta,et al.  Parametric Lyapunov functions for uncertain systems: the multiplier approach , 1999 .

[70]  C. Scherer,et al.  Robust stability analysis for parameter dependent systems using full block S-procedure , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[71]  Tetsuya Iwasaki,et al.  Robust stability analysis with quadratic separator: parametric time-varying uncertainty case , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[72]  James F. Epperson,et al.  An Introduction to Numerical Methods and Analysis , 2001 .