Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.

We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.

[1]  Marko Loncar,et al.  Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities. , 2009, Optics letters.

[2]  Steven G. Johnson,et al.  Purcell effect in nonlinear photonic structures: a coupled mode theory analysis. , 2008, Optics express.

[3]  M. Bieler,et al.  THz Generation From Resonant Excitation of Semiconductor Nanostructures: Investigation of Second-Order Nonlinear Optical Effects , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  S. Combrie,et al.  GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm. , 2008, Optics letters.

[5]  Marko Loncar,et al.  Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity , 2009, 0903.4706.

[6]  Oskar Painter,et al.  Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity , 2004 .

[7]  X. Zhang,et al.  Broadband detection capability of ZnTe electro-optic field detectors , 1996 .

[8]  Steven G. Johnson,et al.  Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities. , 2009, Optics express.

[9]  K. Vodopyanov,et al.  Optical terahertz wave generation in a planar GaAs waveguide. , 2008, Optics letters.

[10]  Steven G. Johnson,et al.  Enhanced nonlinear optics in photonic-crystal microcavities. , 2007, Optics express.

[11]  Marko Loncar,et al.  Ultra-high quality factor optical resonators based on semiconductor nanowires. , 2008, Optics express.

[12]  Weili Zhang,et al.  Terahertz transmission properties of thin, subwavelength metallic hole arrays. , 2004, Optics letters.

[13]  Mark S. Sherwin,et al.  High-Q terahertz microcavities in silicon photonic crystal slabs , 2009 .

[14]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[15]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[16]  M. Kamp,et al.  Ultrahigh-quality photonic crystal cavity in GaAs. , 2006, Optics letters.

[17]  Steven G. Johnson,et al.  Nonlinear harmonic generation and devices in doubly resonant Kerr cavities , 2008, 0808.3122.

[18]  Dan Dalacu,et al.  Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers , 2007 .

[19]  D. C. Hanna,et al.  Handbook of Laser Science and Technology , 1988 .

[20]  J. Vučković,et al.  Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals , 2006 .

[21]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  Martin M. Fejer,et al.  High-power Source of THz Radiation based on Orientation-patterned GaAs pumped by a Fiber Laser , 2006 .

[23]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[24]  Giuseppe Leo,et al.  Integrated terahertz source based on three-wave mixing of whispering-gallery modes. , 2008, Optics letters.

[25]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[26]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[27]  J. B. Baxter,et al.  Terahertz spectroscopy. , 2011, Analytical chemistry.

[28]  H. Kitahara,et al.  Terahertz wave dispersion in two-dimensional photonic crystals , 2001 .

[29]  Martin M. Fejer,et al.  Terahertz-wave generation in quasi-phase-matched GaAs , 2006 .

[30]  Yuri Avetisyan,et al.  Cavity-enhanced terahertz region difference frequency generation in surface-emitting geometry , 1999, Optics & Photonics.

[31]  Daniel R. Grischkowsky,et al.  Characterization of an optoelectronic terahertz beam system , 1990 .

[32]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[33]  Almantas Galvanauskas,et al.  Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate , 2000 .

[34]  Mark S. Sherwin,et al.  Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si , 2003 .

[35]  A. Matsko,et al.  Sensitivity of terahertz photonic receivers , 2008 .

[36]  János Hebling,et al.  Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts , 2004 .

[37]  Jeff F. Young,et al.  Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities , 2005 .

[38]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[39]  Henri Benisty,et al.  Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity , 2006 .

[40]  M M Fejer,et al.  Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs. , 2007, Optics letters.

[41]  D. Mittleman,et al.  Defect modes in photonic crystals studied using terahertz time-domain spectroscopy , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[42]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.