Physical origins and models of energy transfer in photosynthetic light-harvesting.

We perform a quantitative comparison of different energy transfer theories, i.e. modified Redfield, standard and generalized Förster theories, as well as combined Redfield-Förster approach. Physical limitations of these approaches are illustrated and critical values of the key parameters indicating their validity are found. We model at a quantitative level the spectra and dynamics in two photosynthetic antenna complexes: in phycoerythrin 545 from cryptophyte algae and in trimeric LHCII complex from higher plants. These two examples show how the structural organization determines a directed energy transfer and how equilibration within antenna subunits and migration between subunits are superimposed.

[1]  R. Grondelle,et al.  Photosynthesis: Quantum design for a light trap , 2010, Nature.

[2]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[3]  G. Fleming,et al.  Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. , 2009, The journal of physical chemistry. B.

[4]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[5]  Graham R Fleming,et al.  Dynamics of light harvesting in photosynthesis. , 2009, Annual review of physical chemistry.

[6]  Seogjoo J. Jang,et al.  Theory of coherent resonance energy transfer. , 2008, The Journal of chemical physics.

[7]  Thomas Renger,et al.  Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. , 2008, Biophysical journal.

[8]  Thomas Renger,et al.  Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? , 2008, Journal of the American Chemical Society.

[9]  R. Grondelle,et al.  Multistate conformational model of a single LH2 complex : Quantitative picture of time-dependent spectral fluctuations , 2007 .

[10]  R. van Grondelle,et al.  Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. , 2007, Biophysical journal.

[11]  Gregory D. Scholes,et al.  The photophysics of cryptophyte light-harvesting , 2006 .

[12]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[13]  Graham R Fleming,et al.  Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex , 2006, Proceedings of the National Academy of Sciences.

[14]  Rienk van Grondelle,et al.  Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. , 2006, Biophysical journal.

[15]  R. van Grondelle,et al.  Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified redfield simulations. , 2006, Biophysical journal.

[16]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[17]  R. Silbey,et al.  Coherence in the B800 ring of purple bacteria LH2. , 2006, Physical review letters.

[18]  R. van Grondelle,et al.  Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. , 2005, Biophysical journal.

[19]  P. Curmi,et al.  Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. , 2005, The journal of physical chemistry. B.

[20]  Graham R Fleming,et al.  Exciton analysis in 2D electronic spectroscopy. , 2005, The journal of physical chemistry. B.

[21]  R. van Grondelle,et al.  Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Angstrom crystal structure. , 2005, The journal of physical chemistry. B.

[22]  W. Kühlbrandt,et al.  Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution , 2005, The EMBO journal.

[23]  W. Saenger,et al.  Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. , 2005, Biophysical journal.

[24]  Rienk van Grondelle,et al.  Fluorescence spectroscopy of conformational changes of single LH2 complexes. , 2005, Biophysical journal.

[25]  P. Curmi,et al.  Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. , 2004, Journal of molecular biology.

[26]  V. May,et al.  From Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna PS1 , 2004 .

[27]  G. Renger,et al.  Density of Vibrational States of the Light-Harvesting Complex II of Green Plants Studied by Inelastic Neutron Scattering† , 2004 .

[28]  R. Grondelle,et al.  Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach , 2004 .

[29]  Seogjoo J. Jang,et al.  Multichromophoric Förster resonance energy transfer. , 2004, Physical review letters.

[30]  V. Shuvalov,et al.  Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach , 2004 .

[31]  Rienk van Grondelle,et al.  Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. , 2004, Biochemistry.

[32]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[33]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[34]  V. May,et al.  Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. , 2004, The Journal of chemical physics.

[35]  V. Novoderezhkin,et al.  Exciton states of the antenna and energy trapping by the reaction center , 1994, Photosynthesis Research.

[36]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[37]  R. Grondelle,et al.  Intra- and interband transfers in the B800-B850 antenna of Rhodospirillum molischianum Redfield theory modeling of polarized pump-probe kinetics , 2003 .

[38]  M. Rätsep,et al.  Resonant emission from the B870 exciton state and electron–phonon coupling in the LH2 antenna chromoprotein , 2003 .

[39]  G. Fleming,et al.  Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. , 2003, Biophysical journal.

[40]  Bryan Q. Spring,et al.  Dipole Strengths in the Chlorophylls¶,† , 2003 .

[41]  N. Isaacs,et al.  The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions. , 2003, Journal of molecular biology.

[42]  Sergio Marco,et al.  Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Grondelle,et al.  Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach , 2003 .

[44]  D. Klug,et al.  A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. Scholes,et al.  Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. , 2003, Biophysical journal.

[46]  Nobuo Kamiya,et al.  Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Grondelle,et al.  Exciton−Vibrational Relaxation and Transient Absorption Dynamics in LH1 of Rhodopseudomonas viridis: A Redfield Theory Approach , 2002 .

[48]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[49]  R. Marcus,et al.  Photophysical Properties of PS-2 Reaction Centers and a Discrepancy in Exciton Relaxation Times† , 2002 .

[50]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Graham R. Fleming,et al.  Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations , 2002 .

[52]  V. Sundström,et al.  Fluorescence depolarization dynamics in the B850 complex of purple bacteria , 2002 .

[53]  R. van Grondelle,et al.  Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria. , 2001, Biochemistry.

[54]  R. Schödel,et al.  Electron−Phonon Coupling in Solubilized LHC II Complexes of Green Plants Investigated by Line-Narrowing and Temperature-Dependent Fluorescence Spectroscopy , 2001 .

[55]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[56]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[57]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[58]  R. Monshouwer,et al.  Electronic and Vibrational Coherence in the Core Light-Harvesting Antenna of Rhodopseudomonas viridis , 2000 .

[59]  A. Holzwarth,et al.  Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study†,‡ , 2000 .

[60]  S. Mukamel,et al.  Bacteriochlorophyll and Carotenoid Excitonic Couplings in the LH2 System of Purple Bacteria , 2000 .

[61]  C. Gradinaru,et al.  Identifying the Pathways of Energy Transfer between Carotenoids and Chlorophylls in LHCII and CP29. A Multicolor, Femtosecond Pump-Probe Study , 2000 .

[62]  Graham R. Fleming,et al.  Ultrafast Energy Transfer in LHC-II Revealed by Three-Pulse Photon Echo Peak Shift Measurements , 2000 .

[63]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[64]  J. Amesz,et al.  EXCITED STATE DYNAMICS IN FMO ANTENNA COMPLEXES FROM PHOTOSYNTHETIC GREEN SULFUR BACTERIA : A KINETIC MODEL , 1999 .

[65]  P. Curmi,et al.  Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-A resolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Gong,et al.  Investigation of Molecular Diffusion in Hydrogel by Electronic Speckle Pattern Interferometry , 1999 .

[67]  J. Voigt,et al.  Chlorophyll a Franck-Condon factors and excitation energy transfer , 1999 .

[68]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[69]  H. Sumi Theory on Rates of Excitation-Energy Transfer between Molecular Aggregates through Distributed Transition Dipoles with Application to the Antenna System in Bacterial Photosynthesis , 1999 .

[70]  C. Gradinaru,et al.  The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. , 1998, Biophysical journal.

[71]  S. Mukamel,et al.  Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes , 1998 .

[72]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[73]  E. Peterman,et al.  The nature of the excited state of the reaction center of photosystem II of green plants: a high-resolution fluorescence spectroscopy study. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Mukamel,et al.  Simulation of three–pulse–echo and fluorescence depolarization in photosynthetic aggregates , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[75]  C. Gradinaru,et al.  Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. , 1997, Biochemistry.

[76]  S. Mukamel,et al.  Femtosecond photon echoes in molecular aggregates , 1997 .

[77]  V. May,et al.  Influence of Higher Excited Singlet States on Ultrafast Exciton Motion in Pigment‐Protein Complexes , 1997 .

[78]  G. Fleming,et al.  Femtosecond spectroscopy of photosynthetic light-harvesting systems. , 1997, Current opinion in structural biology.

[79]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[80]  V. May,et al.  Theory of Multiple Exciton Effects in the Photosynthetic Antenna Complex LHC-II , 1997 .

[81]  D. Klug,et al.  Exciton equilibration induced by phonons: theory and application to PS II reaction centers. , 1997 .

[82]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[83]  E. Peterman,et al.  Electron-Phonon Coupling and Vibronic Fine Structure of Light-Harvesting Complex II of Green Plants: Temperature Dependent Absorption and High-Resolution Fluorescence Spectroscopy , 1997 .

[84]  V. Sundström,et al.  Energy transfer and relaxation dynamics in light-harvesting antenna complexes of photosynthetic bacteria , 1997 .

[85]  J. P. Connelly,et al.  Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants , 1997 .

[86]  V. Novoderezhkin,et al.  The theory of Forster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria , 1996 .

[87]  V. Sundström,et al.  Femtosecond vibrational dynamics and relaxation in the core light-harvesting complex of photosynthetic purple bacteria , 1996 .

[88]  R. Grondelle,et al.  Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy , 1996 .

[89]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[90]  S. Mukamel,et al.  Optical Stark spectroscopy of molecular aggregates , 1996 .

[91]  G. Fleming,et al.  COMPETITION BETWEEN ENERGY AND PHASE RELAXATION IN ELECTRONIC CURVE CROSSING PROCESSES , 1995 .

[92]  G. Wiederrecht,et al.  Femtosecond transient absorption spectroscopy on the light-harvesting Chl a/b protein complex of Photosystem II at room temperature and 12 K , 1995 .

[93]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[94]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[95]  J. Jean Time‐ and frequency‐resolved spontaneous emission as a probe of coherence effects in ultrafast electron transfer reactions , 1994 .

[96]  M. Wasielewski,et al.  Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach , 1994 .

[97]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[98]  B. M. van Bolhuis,et al.  Polarized fluorescence and absorption of macroscopically aligned Light Harvesting Complex II. , 1994, Biophysical journal.

[99]  L. Mets,et al.  Direct Observation of Ultrafast Energy-Transfer Processes in Light Harvesting Complex II , 1994 .

[100]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[101]  R. Friesner,et al.  Application of a multilevel Redfield theory to electron transfer in condensed phases , 1992 .

[102]  J. Dekker,et al.  Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes , 1992 .

[103]  B. Matthews,et al.  Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola , 1975, Nature.

[104]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .