Some recent advances in validated methods for IVPs for ODEs
暂无分享,去创建一个
[1] Eldon Hansen,et al. Topics in Interval Analysis , 1969 .
[2] Nedialko S. Nedialkov,et al. A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.
[3] L. Pastur,et al. On the spectral and wave propagation properties of the surface Maryland model , 2003 .
[4] P. Hartman. Ordinary Differential Equations , 1965 .
[5] Gerhard Wanner,et al. On the integration of stiff differential equations , 1977 .
[6] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[7] Nedialko S. Nedialkov,et al. Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..
[8] David S. Watkins,et al. Understanding the $QR$ Algorithm , 1982 .
[9] Richard S. Varga,et al. DISCRETIZATION ERRORS FOR WELL-SET CAUCHY PROBLEMS.I., , 1965 .
[10] R. Milner. Mathematical Centre Tracts , 1976 .
[11] N. Nedialkov,et al. Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .
[12] R. Lohner. Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .
[13] N. F. Stewart. A heuristic to reduce the wrapping effect in the numerical solution ofx′=f(t,x) , 1971 .
[14] Martin Berz,et al. Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..
[15] B. L. Ehle. A-Stable Methods and Padé Approximations to the Exponential , 1973 .
[16] John D. Pryce,et al. An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..
[17] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[18] Nedialko S. Nedialkov,et al. An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1998, SCAN.
[19] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .
[20] A. Ralston. A first course in numerical analysis , 1965 .
[21] H. Spreuer,et al. On the Existence and the Verified Determination of Homoclinic and Heteroclinic Orbits of the Origin for the Lorenz Equations , 1993 .
[22] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..