Artificial intelligence in orthodontics

Purpose The aim of this investigation was to create an automated cephalometric X‑ray analysis using a specialized artificial intelligence (AI) algorithm. We compared the accuracy of this analysis to the current gold standard (analyses performed by human experts) to evaluate precision and clinical application of such an approach in orthodontic routine. Methods For training of the network, 12 experienced examiners identified 18 landmarks on a total of 1792 cephalometric X‑rays. To evaluate quality of the predictions of the AI, both AI and each examiner analyzed 12 commonly used orthodontic parameters on a basis of 50 cephalometric X‑rays that were not part of the training data for the AI. Median values of the 12 examiners for each parameter were defined as humans’ gold standard and compared to the AI’s predictions. Results There were almost no statistically significant differences between humans’ gold standard and the AI’s predictions. Differences between the two analyses do not seem to be clinically relevant. Conclusions We created an AI algorithm able to analyze unknown cephalometric X‑rays at almost the same quality level as experienced human examiners (current gold standard). This study is one of the first to successfully enable implementation of AI into dentistry, in particular orthodontics, satisfying medical requirements. Ziel Ziel der vorliegenden Untersuchung war, eine vollständig automatisierte Fernröntgenseitenanalyse auf Basis eines spezialisierten künstlichen neuronalen Netzwerkes zu entwickeln. Die Genauigkeit dieser Analyse wurde mit der Auswertung menschlicher Experten, dem aktuellem Goldstandard, verglichen, um die Eignung eines solchen Systems zur Verwendung im klinischen Alltag zu überprüfen. Patienten und Methodik Für das Training des Netzwerkes wurden auf insgesamt 1792 Fernröntgenseitenbildern jeweils 18 kieferorthopädische Bezugspunkte durch 12 erfahrene Untersucher markiert. Zur Beurteilung der Auswertungsqualität des trainierten Netzwerkes wurden an 50 weiteren Fernröntgenseitenbildern, die nicht Teil der Trainingsdaten waren, sowohl durch die Künstliche Intelligenz (KI) als auch durch jeden der Untersucher 12 gängige kephalometrische Messungen durchgeführt. Als Goldstandard wurde für jeden Parameter der Medianwert der Untersucher definiert, welcher dann mit den Auswertungen der KI verglichen wurde. Ergebnisse Zwischen den Auswertungen der KI und dem menschlichen Goldstandard konnten nahezu keine statistisch signifikanten Unterschiede festgestellt werden. Sofern Unterschiede zwischen beiden Auswertungsmethoden bestanden, konnten diese als klinisch irrelevant betrachtet werden. Schlussfolgerungen Im Rahmen der vorliegenden Untersuchung war es möglich, ein künstliches neuronales Netzwerk darauf zu trainieren, unbekannte Fernröntgenseitenbilder in annähernd derselben Qualität wie der eines erfahrenen Klinikers auszuwerten. Diese Studie ist einer der ersten erfolgreichen Ansätze, künstliche neuronale Netzwerke in der Zahnmedizin, speziell in der Kieferorthopädie, zu integrieren.

[1]  Jae‐Hong Lee,et al.  Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. , 2018, Journal of dentistry.

[2]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[3]  B. Holly Broadbent,et al.  A NEW X-RAY TECHNIQUE and ITS APPLICATION TO ORTHODONTIA , 2009 .

[4]  Osamu Abe,et al.  Deep learning with convolutional neural network in radiology , 2018, Japanese Journal of Radiology.

[5]  Fernando Antonio Gonçalves,et al.  Comparison of cephalometric measurements from three radiological clinics. , 2006, Brazilian oral research.

[6]  S. Nishimoto,et al.  Personal Computer-Based Cephalometric Landmark Detection With Deep Learning, Using Cephalograms on the Internet , 2019, The Journal of craniofacial surgery.

[7]  Maher A. Sid-Ahmed,et al.  An image processing system for locating craniofacial landmarks , 1994, IEEE Trans. Medical Imaging.

[8]  S T Nugent,et al.  Automatic landmarking of cephalograms. , 1989, Computers and biomedical research, an international journal.

[9]  R. Verbeeck,et al.  The clinical significance of error measurement in the interpretation of treatment results. , 2001, European journal of orthodontics.

[10]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[11]  John K. Tsotsos,et al.  Knowledge-based landmarking of cephalograms. , 1986, Computers and biomedical research, an international journal.

[12]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[13]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[14]  C. E. Kahn From Images to Actions: Opportunities for Artificial Intelligence in Radiology. , 2017, Radiology.

[15]  Luca Maria Gambardella,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, High Performance Convolutional Neural Networks for Image Classification , 2022 .

[16]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[17]  Bulat Ibragimov,et al.  Fully automated quantitative cephalometry using convolutional neural networks , 2017, Journal of medical imaging.

[18]  D. Altman,et al.  Measuring agreement in method comparison studies , 1999, Statistical methods in medical research.

[19]  Yann LeCun,et al.  Large-scale Learning with SVM and Convolutional for Generic Object Categorization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  W. Tong,et al.  An algorithm for locating landmarks on dental X-rays , 1989, Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society,.

[21]  K. Dreyer,et al.  When Machines Think: Radiology's Next Frontier. , 2017, Radiology.

[22]  Zhengyang Zhou,et al.  Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. , 2014, International journal of radiation oncology, biology, physics.

[23]  K S Cheng,et al.  Accuracy of computerized automatic identification of cephalometric landmarks. , 2000, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[24]  D N Davis,et al.  Assessment of an automated cephalometric analysis system. , 1996, European journal of orthodontics.

[25]  Chengwen Chu,et al.  Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge , 2015, IEEE Transactions on Medical Imaging.

[26]  Claus Nebauer,et al.  Evaluation of convolutional neural networks for visual recognition , 1998, IEEE Trans. Neural Networks.

[27]  Geoffrey E. Hinton,et al.  Unsupervised learning : foundations of neural computation , 1999 .

[28]  Amandeep Kaur,et al.  Automatic cephalometric landmark detection using Zernike moments and template matching , 2015, Signal Image Video Process..

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Yiming Ding,et al.  A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. , 2019, Radiology.

[31]  Michel Desvignes,et al.  First steps toward automatic location of landmarks on X-ray images , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[32]  Majid Ahmadi,et al.  Automatic localization of craniofacial landmarks for assisted cephalometry , 2004, Pattern Recognit..

[33]  M. Field,et al.  The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review , 2018, Translational Cancer Research.

[34]  D. Altman,et al.  Applying the right statistics: analyses of measurement studies , 2003, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[35]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.