Behaviour of the thermal impedance of buried power cables

Abstract The ampacity of power cables depends heavily on their ability to diffuse their resistive heating to their environment. This ability however depends in turn on the characteristics of the material surrounding the power cable. In this work, the concept of thermal impedance is utilised in order to determine the thermal properties of a power cable buried in earth with respect to the burial depth. To that purpose, a theoretical analysis is conducted concerning the calculation of the thermal impedance for the problem under study. Moreover, an experimental setup is used in order to test the remarks obtained by the theoretical analysis concerning the thermal behaviour of the cable.

[1]  Andrzej Napieralski,et al.  Influence of interface materials on the thermal impedance of electronic packages , 2009 .

[2]  R. D. Findlay,et al.  A new approach to underground cable performance assessment , 2008 .

[3]  Adrian Plesca,et al.  Numerical thermal analysis of fuses for power semiconductors , 2012 .

[4]  Bjorn Vermeersch,et al.  Evaluation of the Heat Transfer Coefficient in Microcircuits From the Frequency Analysis of the Thermal Transient Response , 2010, IEEE Transactions on Components and Packaging Technologies.

[5]  Andrea Vallati,et al.  Improving evaluation of the heat losses from arrays of pipes or electric cables buried in homogeneous soil , 2011 .

[6]  Y. Jaluria,et al.  An Introduction to Heat Transfer , 1950 .

[7]  Gilbert De Mey,et al.  Influence of thermal contact resistance on thermal impedance of microelectronic structures , 2007, Microelectron. Reliab..

[8]  Roberto De Lieto Vollaro,et al.  Thermal analysis of underground electrical power cables buried in non-homogeneous soils , 2011 .

[9]  Gilbert De Mey,et al.  Influence of substrate thickness on thermal impedance of microelectronic structures , 2007, Microelectron. Reliab..

[10]  G. De Mey,et al.  Thermal Characterization of Electronic Packages Using the Nyquist Plot of the Thermal Impedance , 2007, IEEE Transactions on Components and Packaging Technologies.

[11]  G.J. Anders,et al.  An Improved Formula for External Thermal Resistance of Three Buried Single-Core Metal-Sheathed Touching Cables in Flat Formation , 2009, IEEE Transactions on Power Delivery.

[12]  Bjorn Vermeersch,et al.  BEM calculation of the complex thermal impedance of microelectronic devices , 2007 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Alvaro T. Prata,et al.  Experimental analysis of unsteady heat and moisture transfer around a heated cylinder buried into a porous medium , 1999 .

[15]  Andrzej Napieralski,et al.  Thermal impedances of thin plates , 2007 .

[16]  V. Hatziathanassiou,et al.  Finite element computation of field, forces and inductances in underground SF/sub 6/ insulated cables using a coupled magneto-thermal formulation , 1994 .

[17]  Gilbert De Mey,et al.  Thermal impedance plots of micro-scaled devices , 2006, Microelectron. Reliab..

[18]  P. Slaninka,et al.  The external thermal resistance of power cables in a group buried in non-uniform soil , 1994 .