Implicit Differentiation by Perturbation
暂无分享,去创建一个
[1] Daphne Koller,et al. Constrained Approximate Maximum Entropy Learning of Markov Random Fields , 2008, UAI.
[2] Joachim M. Buhmann,et al. Spanning Tree Approximations for Conditional Random Fields , 2009, AISTATS.
[3] Justin Domke. Learning Convex Inference of Marginals , 2008, UAI.
[4] Martin J. Wainwright,et al. A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.
[5] Tamir Hazan,et al. Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies , 2008, UAI.
[6] Yee Whye Teh,et al. Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation , 2001, UAI.
[7] Yee Whye Teh,et al. An Alternate Objective Function for Markovian Fields , 2002, ICML.
[8] Mark W. Schmidt,et al. Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.
[9] Martin J. Wainwright,et al. Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting , 2006, J. Mach. Learn. Res..
[10] Martial Hebert,et al. Discriminative Random Fields , 2006, International Journal of Computer Vision.
[11] B. Schölkopf,et al. Training Conditional Random Fields for Maximum Labelwise Accuracy , 2007 .
[12] Tom Heskes,et al. Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies , 2006, J. Artif. Intell. Res..
[13] Michael I. Jordan,et al. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators , 2008, ICML '08.
[14] Joris M. Mooij,et al. libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..
[15] N. Andrei. Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization , 2009 .
[16] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[17] Zoubin Ghahramani,et al. Choosing a Variable to Clamp , 2009, International Conference on Artificial Intelligence and Statistics.
[18] Alan L. Yuille,et al. CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.
[19] Hilbert J. Kappen,et al. Approximate Inference and Constrained Optimization , 2002, UAI.
[20] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[21] Ofer Meshi,et al. Convexifying the Bethe Free Energy , 2009, UAI.
[22] Martial Hebert,et al. Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study , 2005, EMMCVPR.
[23] Amir Globerson,et al. Convergent message passing algorithms - a unifying view , 2009, UAI.