Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach.

Here, we report a scalable bottom-up approach for fabricating periodic arrays of metal nanorings and nanocrescents. Wafer-scale monolayer silica colloidal crystals with an unusual non-close-packed structure prepared by a simple and rapid spin-coating technology are used as both etching and shadowing masks to create nanoring-shaped trenches in between templated polymer posts and sacrificial nanoholes. Directional deposition of metals in the trenches followed by liftoff of the polymer posts and the sacrificial nanoholes results in forming ordered metal nanorings. The inner and outer radii of the final nanorings are determined by the sizes of the templated polymer posts and the silica microspheres which can be easily adjusted by tuning the spin-coating and templating conditions. Most importantly, by simply controlling the tilt angle of the substrate toward the directional metal beams, continuous geometric transition from concentric nanorings to eccentric nanorings to nanocrescents can be achieved. This new colloidal templating approach is compatible with standard semiconductor microfabrication, promising for mass-production and on-chip integration of periodic nanorings and nanocrescents for a wide spectrum of technological applications ranging from nanooptical devices and ultrasensitive biosensing to magnetic memories and logic circuits.

[1]  P. Nordlander,et al.  Plasmon hybridization in stacked double gold nanorings with reduced symmetry. , 2008, Small.

[2]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[3]  P. Jiang Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  Bai Yang,et al.  Fabrication of Binary and Ternary Hybrid Particles Based on Colloidal Lithography , 2012 .

[5]  Chia-Yang Tsai,et al.  Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. , 2012, Nano letters.

[6]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[7]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[8]  Peter Nordlander,et al.  The ring: a leitmotif in plasmonics. , 2009, ACS nano.

[9]  Liang Li,et al.  Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications , 2011 .

[10]  H. Butt,et al.  Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. , 2011, Nano letters.

[11]  W. Cai,et al.  Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals† , 2008 .

[12]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[13]  F. Sun,et al.  Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications , 2006 .

[14]  Tomohiko Yamaguchi,et al.  Dewetting self-assembly of nanoparticles into hexagonal array of nanorings. , 2007, Journal of colloid and interface science.

[15]  C. Somaschini,et al.  Fabrication of multiple concentric nanoring structures. , 2009, Nano letters.

[16]  I. B. Ivanov,et al.  Two-dimensional crystallization , 1993, Nature.

[17]  Peng Jiang,et al.  Templated fabrication of sub-100 nm periodic nanostructures. , 2008, Chemical communications.

[18]  P. Hoffmann,et al.  Hierarchical positioning of gold nanoparticles into periodic arrays using block copolymer nanoring templates. , 2011, Journal of colloid and interface science.

[19]  M. Nielsen,et al.  Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. , 2011, Optics express.

[20]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[21]  Ruth Pachter,et al.  Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. , 2012, Nano letters.

[22]  P. Cremer,et al.  Templating water stains for nanolithography. , 2007, Nano letters (Print).

[23]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[24]  T. Deng,et al.  Generation and assembly of spheroid-like particles. , 2008, Journal of the American Chemical Society.

[25]  Michael Giersig,et al.  Shadow Nanosphere Lithography: Simulation and Experiment , 2004 .

[26]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[27]  V. Colvin,et al.  Two-dimensional nonclose-packed colloidal crystals formed by spincoating , 2006 .

[28]  Federico Capasso,et al.  Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning. , 2010, ACS nano.

[29]  Yang Li,et al.  A Universal Approach to Fabricate Various Nanoring Arrays Based on a Colloidal‐Crystal‐Assisted‐Lithography Strategy , 2008 .

[30]  Rostislav Bukasov,et al.  Probing the plasmonic near-field of gold nanocrescent antennas. , 2010, ACS nano.

[31]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[32]  Seung‐Man Yang,et al.  Gold “Nanograils” with Tunable Dipolar Multiple Plasmon Resonances , 2009 .

[33]  Hongyuan Wei,et al.  Patterned nanoring magnetic tunnel junctions , 2007 .

[34]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[35]  M. Hillmyer,et al.  Nanoscale rings from silicon-containing triblock terpolymers. , 2012, ACS applied materials & interfaces.

[36]  P. Braun,et al.  Template-assisted three-dimensional nanolithography via geometrically irreversible processing. , 2009, Nano letters.

[37]  Liesbet Lagae,et al.  Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection , 2012 .

[38]  C. Dupont-Gillain,et al.  Colloidal lithography using silica particles: improved particle distribution and tunable wetting properties. , 2013, Journal of colloid and interface science.

[39]  Matthew B. Johnson,et al.  Fabrication of Nanoring Arrays by Sputter Redeposition Using Porous Alumina Templates , 2004 .

[40]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[41]  Bai Yang,et al.  Steric hindrance colloidal microsphere approach to fabricate ordered and interconnected Pt or Pt/Ag hollow hemispheres. , 2013, Journal of colloid and interface science.

[42]  Joseph M. McLellan,et al.  Side-by-side patterning of multiple alkanethiolate monolayers on gold by edge-spreading lithography. , 2005, Angewandte Chemie.

[43]  Luke P. Lee,et al.  Magnetic Nanocrescents as Controllable Surface‐Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging , 2005 .

[44]  Ning Yang,et al.  Two-electron states and their entanglement in a double-barrier nanoring , 2006 .

[45]  T. Veres,et al.  New application of AAO template: a mold for nanoring and nanocone arrays. , 2006, Journal of the American Chemical Society.

[46]  Michael J McFarland,et al.  Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. , 2004, Journal of the American Chemical Society.

[47]  A. Wei,et al.  Fabrication of anisotropic metal nanostructures using innovations in template-assisted lithography. , 2012, ACS nano.

[48]  Luke P. Lee,et al.  Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. , 2005, Nano letters.

[49]  Bai Yang,et al.  Fabrication of heterogeneous double-ring-like structure arrays by combination of colloidal lithography and controllable dewetting. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[50]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[51]  M. Giersig,et al.  An approach to fabrication of metal nanoring arrays. , 2010, Langmuir.

[52]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[53]  G. A. Prinz,et al.  Ultrahigh density vertical magnetoresistive random access memory (invited) , 2000 .

[54]  H. Yabu Bottom-up approach to creating three-dimensional nanoring arrays composed of Au nanoparticles. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[55]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[56]  Ruiping Liu,et al.  Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. , 2012, ACS nano.

[57]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[58]  A I Larkin,et al.  Persistent current in superconducting nanorings. , 2002, Physical review letters.

[59]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[60]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[61]  M. Mcfarland,et al.  Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. , 2005, Journal of the American Chemical Society.