Robust LPV– ∞ control for active suspensions with performance adaptation in view of global chassis control

This paper presents a new methodology for suspension control in view of global chassis control, developed in particular to guarantee greater driving safety and comfort. The control of the suspension subsystem allows the vehicle road holding (safety) and passenger comfort to be improved, but not at the same time. In order to reach them for every driving situation, an ‘adaptive’ two-degrees-of-freedom controller for active suspensions is proposed. This control architecture is ‘open’ and could be linked and aggregated to many other controllers of vehicle dynamics. This control strategy ensures, on the one hand, the robustness in performances with respect to parameter uncertainties and, on the other hand, the trade-off between road holding and comfort. The proposed design is based on the LPV/ ∞ theory. Robust stability and performances are analysed within the μ-analysis framework.

[1]  L. R. Miller Tuning passive, semi-active, and fully active suspension systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[2]  Tetsuro Butsuen,et al.  Invariant Properties of Automotive Suspensions , 1990 .

[3]  D. Hrovat,et al.  Optimal active suspension structures for quarter-car vehicle models , 1990, Autom..

[4]  T D Gillespie,et al.  Fundamentals of Vehicle Dynamics , 1992 .

[5]  Junichi Emura,et al.  Development of the semi-active suspension system based on the sky-hook damper theory , 1994 .

[6]  Kisaburo Hayakawa,et al.  Application of H∞ control to active suspension systems , 1994, Autom..

[7]  Anton van Zanten,et al.  VDC, The Vehicle Dynamics Control System of Bosch , 1995 .

[8]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[9]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[10]  Juan C. Cockburn,et al.  Linear Fractional Representations of Uncertain Systems , 1997, Autom..

[11]  D. Hrovat,et al.  Survey of Advanced Suspension Developments and Related Optimal Control Applications, , 1997, Autom..

[12]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[13]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[14]  Jong Hyeon Park,et al.  An H∞ Controlller for Active Suspensions and its Robustness Based on a Full-Car Model , 1999 .

[15]  Luc Dugard,et al.  H/sub /spl infin// control of active vehicle suspensions , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[16]  Uwe Kiencke,et al.  Automotive Control Systems: For Engine, Driveline, and Vehicle , 2000 .

[17]  P Rieth,et al.  Global Chassis Control – Systemvernetzung im Fahrwerk (Global Chassis Control – Integration of Chassis Systems) , 2002 .

[18]  Gary J. Balas,et al.  Road adaptive active suspension design using linear parameter-varying gain-scheduling , 2002, IEEE Trans. Control. Syst. Technol..

[19]  Péter Gáspár,et al.  Design of Robust Controllers for Active Vehicle Suspension Using the Mixed µ Synthesis , 2003 .

[20]  A. Oustaloup,et al.  La suspension CRONE Hydractive : modélisation et stabilité : Automatismes : les systèmes hybrides , 2003 .

[21]  Luc Dugard,et al.  Robust H∞ control of quarter-car semi-active suspensions , 2003, 2003 European Control Conference (ECC).

[22]  B. d'Andrea-Novel,et al.  Collaboration between braking torques and active suspension forces to control a vehicle , 2003, 2003 European Control Conference (ECC).

[23]  Olivier Sename,et al.  Skyhook and H8 Control of Semi-active Suspensions: Some Practical Aspects , 2003 .

[24]  O. Altet,et al.  La suspension CRONE Hydractive: modelisation et stabilite , 2003 .

[25]  András Varga,et al.  Computation of Kalman decompositions of periodic systems , 2003, 2003 European Control Conference (ECC).

[26]  Péter Gáspár,et al.  The Design of a Combined Control Structure to Prevent the Rollover of Heavy Vehicles , 2004, Eur. J. Control.

[27]  Jon Rigelsford,et al.  Automotive Control Systems: For Engine, Driveline and Vehicle , 2004 .

[28]  G. Lucente,et al.  H∞ Control of Automotive Semi-Active Suspensions , 2004 .

[29]  Olivier Sename,et al.  Active Comfort and Handling Improvement with a "3D" Bicycle Model , 2004 .

[30]  Hong Chen,et al.  Constrained Control of Active Suspensions: An LMI Approach , 2005 .

[31]  Z. Szabo,et al.  The Design of an Integrated Control System in Heavy Vehicles Based on an LPV Method , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Olivier Sename,et al.  SWITCHED H∞ CONTROL STRATEGY OF AUTOMOTIVE ACTIVE SUSPENSIONS , 2005 .

[33]  Yasuji Shibahata Progress and future direction of Chassis control technology , 2005, Annu. Rev. Control..

[34]  H. Chen,et al.  Application of Constrained H∞ Control to Active Suspension Systems on Half-Car Models , 2005 .

[35]  Konghui Guo,et al.  Constrained H/sub /spl infin// control of active suspensions: an LMI approach , 2005, IEEE Transactions on Control Systems Technology.

[36]  Péter Gáspár,et al.  A fault-tolerant rollover prevention system based on an LPV method , 2006 .

[37]  O. Sename,et al.  Stratégie d'anticipation pour le contrôle global du châssis à l'aide de suspensions actives , 2006 .

[38]  Charles Poussot-Vassal,et al.  Towards global chassis control by integrating the brake and suspension systems , 2007 .

[39]  Nong Zhang,et al.  H∞ control of active vehicle suspensions with actuator time delay , 2007 .

[40]  O. Sename,et al.  Multi-objective qLPV H ∞ / H 2 control of a half vehicle , 2009 .