Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain

Architecture of auditory areas of the superior temporal region (STR) in the human was analyzed in Nissl‐stained material to see whether auditory cortex is organized according to principles that have been described in the rhesus monkey. Based on shared architectonic features, the auditory cortex in human and monkey is organized into three lines: areas in the cortex of the circular sulcus (root), areas on the supratemporal plane (core), and areas on the superior temporal gyrus (belt). The cytoarchitecture of the auditory area changes in a stepwise manner toward the koniocortical area, both from the direction of the temporal polar proisocortex as well as from the caudal temporal cortex. This architectonic dichotomy is consistent with differences in cortical and subcortical connections of STR and may be related to different functions of the rostral and caudal temporal cortices. There are some differences between rhesus monkey and human auditory anatomy. For instance, the koniocortex, root area PaI, and belt area PaA show further differentiation into subareas in the human brain. The relative volume of the core area is larger than that of the belt area in the human, but the reverse is true in the monkey. The functional significance of these differences across species is not known but may relate to speech and language functions. J. Comp. Neurol. 504:470–498, 2007. Published 2007 Wiley‐Liss, Inc.

[1]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[2]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[3]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[4]  M Hallett,et al.  Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. , 1969, Brain research.

[5]  M. B. Carpenter A Stereotaxic Atlas of the Human Thalamus and Adjacent Structures , 1970, Neurology.

[6]  J. Turner,et al.  A STEREOTAXIC ATLAS OF THE HUMAN THALAMUS AND ADJACENT STRUCTURES , 1970 .

[7]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .

[8]  F. Sanides 7 – Representation in the Cerebral Cortex and Its Areal Lamination Patterns , 1972 .

[9]  M M Mesulam,et al.  The projections of the medial geniculate complex within the sylvian fissure of the rhesus monkey. , 1973, Brain research.

[10]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[11]  H. Burton,et al.  The posterior thalamic region and its cortical projection in new world and old world monkeys , 1976, The Journal of comparative neurology.

[12]  T. Imig,et al.  Organization of auditory cortex in the owl monkey (Aotus trivirgatus) , 1977, The Journal of comparative neurology.

[13]  G. Schaltenbrand,et al.  Atlas for Stereotaxy of the Human Brain , 1977 .

[14]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[15]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[16]  P. Roller,et al.  Formaldehyde fixation. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[17]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[18]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[19]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[20]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[21]  P. B. Cipolloni,et al.  Connectional analysis of the ipsilateral and contralateral afferent neurons of the superior temporal region in the rhesus monkey , 1989, The Journal of comparative neurology.

[22]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[23]  Richard S. J. Frackowiak,et al.  The anatomy of phonological and semantic processing in normal subjects. , 1992, Brain : a journal of neurology.

[24]  J Sergent,et al.  Distributed neural network underlying musical sight-reading and keyboard performance. , 1992, Science.

[25]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[26]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[27]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[28]  D. N. Pandya,et al.  Laminar Termination Patterns of Thalamic, Callosal, and Association Afferents in the Primary Auditory Area of the Rhesus Monkey , 1993, Experimental Neurology.

[29]  M. Molinari,et al.  Auditory thalamocortical pathways defined in monkeys by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[30]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[31]  Alan C. Evans,et al.  Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception , 1996, Journal of Cognitive Neuroscience.

[32]  E. Diesch,et al.  Magnetic fields elicited by tones and vowel formants reveal tonotopy and nonlinear summation of cortical activation. , 1997, Psychophysiology.

[33]  D. Weinberger,et al.  Genetic variability of human brain size and cortical gyral patterns. , 1997, Brain : a journal of neurology.

[34]  V M Haughton,et al.  Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. , 1997, AJNR. American journal of neuroradiology.

[35]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[36]  J. Rauschecker Processing of complex sounds in the auditory cortex of cat, monkey, and man. , 1997, Acta oto-laryngologica. Supplementum.

[37]  Bernd Lütkenhöner,et al.  High-Precision Neuromagnetic Study of the Functional Organization of the Human Auditory Cortex , 1998, Audiology and Neurotology.

[38]  J. Kaas,et al.  Subdivisions of AuditoryCortex and Levels of Processing in Primates , 1998, Audiology and Neurotology.

[39]  J. Kaas,et al.  Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[40]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[41]  K. Scheffler,et al.  Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI , 1998, Hearing Research.

[42]  S. Clarke,et al.  Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining , 1998, The European journal of neuroscience.

[43]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[44]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[45]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[46]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[47]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[48]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G H Recanzone,et al.  Spatial processing in the auditory cortex of the macaque monkey. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Mizutani,et al.  Identification of the primary auditory field in archival human brain tissue via immunocytochemistry of parvalbumin , 2000, Neuroscience Letters.

[51]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G H Recanzone,et al.  Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. , 2000, Journal of neurophysiology.

[54]  Yasushi Miyashita,et al.  Functional Differentiation in the Human Auditory and Language Areas Revealed by a Dichotic Listening Task , 2000, NeuroImage.

[55]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J B Poline,et al.  A cortical region sensitive to auditory spectral motion , 2000, Neuroreport.

[57]  C. Grady,et al.  “What” and “where” in the human auditory system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[59]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[60]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[61]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[62]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[63]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[64]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[65]  J. Thiran,et al.  Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study , 2000, NeuroImage.

[66]  M. Harms,et al.  Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. , 2002, Journal of neurophysiology.

[67]  Yihong Yang,et al.  Physiological Mapping of Human Auditory Cortices with a Silent Event-Related fMRI Technique , 2002, NeuroImage.

[68]  Jean-Philippe Thiran,et al.  What and Where in human audition: selective deficits following focal hemispheric lesions , 2002, Experimental Brain Research.

[69]  D. Yves von Cramon,et al.  Is It Tonotopy after All? , 2002, NeuroImage.

[70]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[71]  J. Rauschecker,et al.  Perception of Sound-Source Motion by the Human Brain , 2002, Neuron.

[72]  G. Recanzone Where was that? – human auditory spatial processing , 2002, Trends in Cognitive Sciences.

[73]  R. Zatorre,et al.  Where is 'where' in the human auditory cortex? , 2002, Nature Neuroscience.

[74]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[75]  I. Johnsrude,et al.  Spectral and temporal processing in human auditory cortex. , 2002, Cerebral cortex.

[76]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[77]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[78]  M. Jenkinson,et al.  In vivo identification of human cortical areas using high-resolution MRI: An approach to cerebral structure–function correlation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Stephanie Clarke,et al.  Patterns of calcium‐binding proteins support parallel and hierarchical organization of human auditory areas , 2003, The European journal of neuroscience.

[80]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[81]  Deborah A Hall,et al.  Auditory Pathways: Are ‘What’ and ‘Where’ Appropriate? , 2003, Current Biology.

[82]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[83]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[84]  M. Mishkin,et al.  Functional Mapping of the Primate Auditory System , 2003, Science.

[85]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[86]  R. Zatorre,et al.  Sensitivity to Auditory Object Features in Human Temporal Neocortex , 2004, The Journal of Neuroscience.

[87]  J. Allman,et al.  The scaling of frontal cortex in primates and carnivores. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Alan R Palmer,et al.  Different areas of human non‐primary auditory cortex are activated by sounds with spatial and nonspatial properties , 2004, Human brain mapping.

[89]  Gregory Hickok,et al.  Human cortical auditory motion areas are not motion selective , 2004, Neuroreport.

[90]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[91]  J. Hyvärinen,et al.  Functional properties of neurons in the temporo-parietal association cortex of awake monkey , 2004, Experimental Brain Research.

[92]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[93]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[94]  Monica L. Hawley,et al.  Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei , 2005, Hearing Research.

[95]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[96]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[97]  K. Amunts,et al.  Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy , 2005, Anatomy and Embryology.

[98]  Katrin Krumbholz,et al.  Hierarchical processing of sound location and motion in the human brainstem and planum temporale , 2005, The European journal of neuroscience.

[99]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[100]  H. Bridge,et al.  Methodological issues relating to in vivo cortical myelography using MRI , 2005, Human brain mapping.

[101]  Irina S. Sigalovsky,et al.  Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. , 2005, Journal of neurophysiology.

[102]  Superior Temporal Region , 2006 .

[103]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[104]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[105]  Lisa A. de la Mothe,et al.  Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[106]  Yoshinao Kajikawa,et al.  Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[107]  R. Luján Fiber Pathways of the Brain, J.D. Schmahmann, D.N. Pandya (Eds.). Oxford University Press (2006), ISBN: 0-19-510423-4 , 2008 .