Compressed Magnetic Field in the Magnetically Regulated Global Collapsing Clump of G9.62+0.19

How stellar feedback from high-mass stars (e.g., H ii regions) influences the surrounding interstellar medium and regulates new star formation is still unclear. To address this question, we observed the G9.62+0.19 complex in 850 μm continuum with the James Clerk Maxwell Telescope/POL-2 polarimeter. An ordered magnetic field has been discovered in its youngest clump, the G9.62 clump. The magnetic field strength is determined to be ∼1 mG. Magnetic field plays a larger role than turbulence in supporting the clump. However, the G9.62 clump is still unstable against gravitational collapse even if thermal, turbulent, and magnetic field support are taken into account together. The magnetic field segments in the outskirts of the G9.62 clump seem to point toward the clump center, resembling a dragged-in morphology, indicating that the clump is likely undergoing magnetically regulated global collapse. However, the magnetic field in its central region is aligned with the shells of the photodissociation regions and is approximately parallel to the ionization (or shock) front, indicating that the magnetic field therein is likely compressed by the expanding H ii regions that formed in the same complex.

[1]  K. Menten,et al.  Probing the initial conditions of high-mass star formation , 2007, Astronomy & Astrophysics.

[2]  Hilo,et al.  Dust spectrum and polarisation at 850 μm in the massive IRDC G035.39-00.33 , 2018, Astronomy & Astrophysics.

[3]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[4]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[5]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[6]  L. V. Tóth,et al.  A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields , 2018, The Astrophysical Journal.

[7]  W. P. Chen,et al.  A First Look at the BISTRO Observations of the Rho OPH-A Core , 2018 .

[8]  P. Koch,et al.  Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA , 2018, 1801.08264.

[9]  P. Koch,et al.  MAGNETIC FIELDS AND MASSIVE STAR FORMATION , 2014, Proceedings of the International Astronomical Union.

[10]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[11]  G. Garay,et al.  ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex , 2017, 1705.04907.

[12]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[13]  M. Tamura,et al.  A Curved Magnetic Field in the Ring-like Shell of Bubble N4 , 2017, 1703.02649.

[14]  H. Kirk,et al.  Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps , 2016, 1605.08835.

[15]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[16]  P. Andre',et al.  Filamentary structure and magnetic field orientation in Musca , 2016 .

[17]  Manash R. Samal,et al.  INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS , 2016, 1601.01114.

[18]  Jinghua Yuan,et al.  A FEEDBACK-DRIVEN BUBBLE G24.136+00.436: A POSSIBLE SITE OF TRIGGERED STAR FORMATION , 2014, 1411.1226.

[19]  K. Menten,et al.  MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS , 2014, 1410.7390.

[20]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[21]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[22]  L. Mundy,et al.  MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES , 2012, 1212.0540.

[23]  R. Klein,et al.  THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK , 2012, 1211.3467.

[24]  S. Qin,et al.  TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853 , 2012, 1203.4659.

[25]  M. Thompson,et al.  The statistics of triggered star formation: An overdensity of massive YSOs around Spitzer bubbles , 2011, 1111.0972.

[26]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[27]  D. Astronomy,et al.  Radiation-magnetohydrodynamic simulations of H ii regions and their associated PDRs in turbulent molecular clouds , 2011, 1101.5510.

[28]  H. Chen,et al.  INFALL AND OUTFLOW MOTIONS IN THE HIGH-MASS STAR-FORMING COMPLEX G9.62+0.19 , 2011, 1101.1580.

[29]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[30]  K. M. Menten,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VII. G9.62+0.20 AND THE EXPANDING 3 kpc ARM , 2009, 0909.3773.

[31]  P. Koch,et al.  EVOLUTION OF MAGNETIC FIELDS IN HIGH-MASS STAR FORMATION: LINKING FIELD GEOMETRY AND COLLAPSE FOR THE W51 e2/e8 CORES , 2009, 0905.1996.

[32]  Gilles Chabrier,et al.  Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores , 2008, 0805.0691.

[33]  A. Zavagno,et al.  Triggered star formation on the borders of the Galactic Hii region RCW 82 , 2007 .

[34]  M. J. Wolff,et al.  The Bubbling Galactic Disk , 2006 .

[35]  A. Zavagno,et al.  Triggered massive-star formation on the borders of Galactic H ii regions ? II. Evidence for the collect and collapse process around RCW 79 , 2005, astro-ph/0509289.

[36]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[37]  Y. Shirley,et al.  The Physical Conditions for Massive Star Formation: Dust Continuum Maps and Modeling , 2002, astro-ph/0207322.

[38]  M. Norman,et al.  Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.

[39]  T. Henning,et al.  A High-Velocity Molecular Outflow from the G9.62+0.19 Star-forming Region , 2001 .

[40]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[41]  C. Walmsley,et al.  Massive Star Formation in the Hot, Dense Cloud Core of G9.62+0.19 , 1996 .

[42]  A. Fowler Infrared detectors and instrumentation for astronomy : 18-21 April 1995, Orlando, Florida , 1995 .

[43]  C. Walmsley,et al.  High-Resolution Observations of a New Ammonia Maser Line in G9.62+0.19 , 1994 .

[44]  A. Whitworth,et al.  The Preferential Formation of High-Mass Stars in Shocked Interstellar Gas Layers , 1994 .

[45]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[46]  C. Lada,et al.  Sequential formation of subgroups in OB associations , 1977 .

[47]  S. Chandrasekhar,et al.  Problems of Gravitational Stability in the Presence of a Magnetic Field , 1953 .

[48]  L. Davis,et al.  The Strength of Interstellar Magnetic Fields , 1951 .