A symbolic information approach to determine anticipated and delayed synchronization in neuronal circuit models

The phenomenon of synchronization between two or more areas of the brain coupled asymmetrically is a relevant issue for understanding mechanisms and functions within the cerebral cortex. Anticipated synchronization (AS) refers to the situation in which the receiver system synchronizes to the future dynamics of the sender system while the intuitively expected delayed synchronization (DS) represents exactly the opposite case. AS and DS are investigated in the context of causal information formalism. More specifically, we use a multi-scale symbolic information-theory approach for discriminating the time delay displayed between two areas of the brain when they exchange information.

[1]  Cristina Masoller,et al.  Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  John J. Foxe,et al.  Oscillatory Alpha-Band Mechanisms and the Deployment of Spatial Attention to Anticipated Auditory and Visual Target Locations: Supramodal or Sensory-Specific Control Mechanisms? , 2011, The Journal of Neuroscience.

[4]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[5]  E. M. Shahverdiev,et al.  Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[6]  Gregor M. Hörzer,et al.  Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance , 2012, Nature Neuroscience.

[7]  M. C. Soriano,et al.  Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[9]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[10]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[11]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[12]  Ned J Corron,et al.  Lag and anticipating synchronization without time-delay coupling. , 2005, Chaos.

[13]  E. Kandel,et al.  Essentials of Neural Science and Behavior , 1996 .

[14]  G. L. Gerstein,et al.  Interactions between cat striate cortex neurons , 2004, Experimental Brain Research.

[15]  X. Beristain Essentials of neural science and behavior , 1996 .

[16]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[17]  Claudio R Mirasso,et al.  Anticipated synchronization in a biologically plausible model of neuronal motifs. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[19]  Leonardo L. Gollo,et al.  Modeling positive Granger causality and negative phase lag between cortical areas , 2014, NeuroImage.

[20]  S. Molotchnikoff,et al.  The Lateral Posterior-Pulvinar Complex Modulation of Stimulus-dependent Oscillations in the Cat Visual Cortex , 1996, Vision Research.

[21]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Stefan Everling,et al.  A long-range fronto-parietal 5- to 10-Hz network predicts "top-down" controlled guidance in a task-switch paradigm. , 2014, Cerebral cortex.

[23]  Osvaldo A. Rosso,et al.  Bandt–Pompe approach to the classical-quantum transition , 2007 .

[24]  Romain Brette,et al.  Computing with Neural Synchrony , 2012, PLoS Comput. Biol..

[25]  C. Medaglia,et al.  A Numerical Study , 2005 .

[26]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[27]  M. C. Soriano,et al.  Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis , 2011, IEEE Journal of Quantum Electronics.

[28]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[29]  Martín Gómez Ravetti,et al.  The Amigó paradigm of forbidden/missing patterns: a detailed analysis , 2012 .

[30]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[31]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[32]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[33]  J. M. Sausedo-Solorio,et al.  Synchronization of map-based neurons with memory and synaptic delay , 2014 .

[34]  Dewen Hu,et al.  Hemodynamic and electrophysiological spontaneous low-frequency oscillations in the cortex: Directional influences revealed by Granger causality , 2014, NeuroImage.

[35]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[36]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .

[38]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[39]  Alexander N. Pisarchik,et al.  Synchronization with an arbitrary phase shift in a pair of synaptically coupled neural oscillators , 2014 .

[40]  D. Long Networks of the Brain , 2011 .

[41]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Claudio R Mirasso,et al.  Anticipating the response of excitable systems driven by random forcing. , 2002, Physical review letters.

[43]  Osvaldo A. Rosso,et al.  Efficiency characterization of a large neuronal network: A causal information approach , 2013, 1304.0399.

[44]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[45]  C. Bandt Ordinal time series analysis , 2005 .

[46]  D. Zanette,et al.  Anticipated synchronization in coupled chaotic maps with delays , 2001, nlin/0104061.

[47]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[48]  Osvaldo A. Rosso,et al.  Info-quantifiers’ map-characterization revisited , 2010 .

[49]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.

[50]  Osvaldo A. Rosso,et al.  Ambiguities in Bandt–Pompe’s methodology for local entropic quantifiers , 2012 .

[51]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[53]  Peter Hänggi,et al.  Anticipated synchronization in coupled inertial ratchets with time-delayed feedback: a numerical study. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Luciano Zunino,et al.  Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution , 2013 .

[55]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[56]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[57]  R. Toral,et al.  Dynamical mechanism of anticipating synchronization in excitable systems. , 2004, Physical review letters.

[58]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[59]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[60]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[61]  Osvaldo A. Rosso,et al.  Causality and the entropy–complexity plane: Robustness and missing ordinal patterns , 2011, 1105.4550.

[62]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[63]  H U Voss,et al.  Dynamic long-term anticipation of chaotic states. , 2001, Physical review letters.

[64]  Cristina Masoller,et al.  Detecting and quantifying temporal correlations in stochastic resonance via information theory measures , 2009 .

[65]  Marc-Thorsten Hütt,et al.  Combining spiral and target wave detection to analyze excitable media dynamics , 2010 .

[66]  Osvaldo A. Rosso,et al.  Contrasting chaos with noise via local versus global information quantifiers , 2012 .

[67]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[68]  M. C. Soriano,et al.  Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.