Vinyl‐Kationen, I. Umlagerungen von Homopropargyl‐Verbindungen zu kleinen Ringen

Primare Homopropargylsulfonate (7: R = Alkyl, X = OSO2R′) ergeben bei Solvolyse in Losungsmitteln geringer Nucleophilie (Ameisensaure, Trifluoressigsaure) bevorzugt 2-Alkylcyclobutanone (11: R = Alkyl). Der Einflus der Substituenten an der Dreifachbindung auf die Richtung der Umlagerung wird untersucht. Sekundare Homopropargylsulfonate (18: X = OSO2R′) ergeben bei der Solvolyse geringere Ausbeuten an Cyclobutanonen. Die Solvolyse primarer Homopropargylsulfonate in Gegenwart von Quecksilbersalzen fuhrt bevorzugt zu Alkyl-cyclopropyl-ketonen. Vinyl Cations, I. Rearrangements of Homopropargyl Compounds to Small Rings Primary homopropargyl sulfonates (7, R = alkyl, X = OSO2R′) yield on solvolysis in solvents of low nucleophilic character (formic acid, trifluoroacetic acid) predominantly 2-alkyl-cyclobutanones (11, R = alkyl). The influence of substitution at the acetylenic carbon atom on the direction of rearrangement has been investigated. Secondary homopropargyl sulfonates (18, X = OSO2R) yield on solvolysis smaller amounts of cyclobutanones. Solvolysis of primary homopropargyl sulfonates in presence of mercuric salts yields predominantly alkylcyclopropyl ketones.

[1]  P. E. Peterson,et al.  Vinyl cations. The solvolysis of vinyl sulfonates , 1969 .

[2]  M. Dewar,et al.  Molecular orbital calculations on carbonium ions. II. Methyl, ethyl, and vinyl cations. The series C3H7+ , 1969 .

[3]  T. L. Jacobs,et al.  Effect of substitution on homoallenic participation in solvolyses , 1969 .

[4]  W. Jones,et al.  Solvolysis of sulfonic acid esters of triphenylvinyl alcohol by a heterolytic mechanism , 1969 .

[5]  P. E. Peterson,et al.  Solvents of low nucleophilicity. XII. Triple-bond participation in the acetolysis, formolysis, and trifluoroacetolysis of 6-heptyn-2-yl tosylate and 6-octyn-2-yl tosylate , 1969 .

[6]  P. Stang,et al.  Preparation and solvolysis of vinyl trifluoromethanesulfonates. I. Evidence for simple alkylvinyl cation intermediates , 1969 .

[7]  Joseph W. Wilson Anchimeric assistance, rearrangement, and solvent addition in the formolysis of a nonconjugated acetylenic (homopropargylic) tosylate , 1969 .

[8]  R. S. Bly,et al.  Unsaturated neopentyl compounds. The effect of methyl substitution on the acetolysis rates of homoallenic neopentyl-type brosylates , 1969 .

[9]  M. Hanack,et al.  Vinyl cation. Solvolysis of 1-cyclopropyl-1-chloroethylene , 1969 .

[10]  R. Bergman,et al.  Synthesis and solvolysis of 1-cyclopropyl-1-iodoethylene. Generation of an unusually stable vinyl cation , 1969 .

[11]  M. Santelli,et al.  Transposition homoallenylique : nature des intermediaires. I. Cas des composes β alleniques non substitues en position 3. , 1969 .

[12]  L. Miller,et al.  Solvolysis of triaryliodoethylenes. Structure and selectivity of vinyl cations , 1968 .

[13]  H. Meyer,et al.  Untersuchungen an Cyclopropanverbindungen, XIV1) Umlagerungen von Trifluormethyl-substit. Cyclopropylcarbinyl-und Cyclobutyl-Verbindungen , 1968 .

[14]  M. Schiavelli,et al.  Acid-catalyzed hydration of phenylacetylene. Evidence for the vinyl cation intermediate , 1968 .

[15]  F. G. Drakesmith,et al.  Preparation and reactions of lithium derivatives of trifluoropropene and trifluoropropyne , 1968 .

[16]  R. S. Bly,et al.  Unsaturated neopentyl compounds. Homoallenyl participation in the acetolysis of 2,2-dimethyl-3,4-pentadienyl p-bromobenzenesulfonate , 1967 .

[17]  M. Doyle,et al.  Medium effects. I. Solvolysis of 5-hexenyl p-nitrobenzenesulfonate in acetic acid-nonhydroxylic solvent (20:80) mixtures , 1967 .

[18]  H. Schneider,et al.  Nachbargruppeneffekte und Umlagerungen bei Reaktionen von Cyclopropylmethyl‐, Cyclobutyl‐ und Homoallyl‐Systemen , 1967 .

[19]  M. Hanack,et al.  Neighboring‐Group Effects and Rearrangements in Reactions of Cyclopropylmethyl, Cyclobutyl, and Homoallyl Systems , 1967 .

[20]  R. C. Fahey,et al.  Polar additions to olefins and acetylenes. IV. Evidence for synchronous carbon-hydrogen and carbon-chlorine bond formation in the trans addition of hydrogen chloride to 3-hexyne , 1967 .

[21]  D. S. Noyce,et al.  MECHANISM OF THE ACID-CATALYZED HYDRATION OF PHENYLPROPIOLIC ACID. , 1967 .

[22]  H. Schneider,et al.  Umlagerungen von Homoallyl-, von Cyclopropylmethyl- und Cyclobutyl-Verbindungen , 1967 .

[23]  P. E. Peterson,et al.  Solvents of Low Nucleophilicity. VIII. Possible Vinyl Cation Intermediates, a 1,4-Chlorine Shift, and Novel Substituent Cleavages in the Reaction of Trifluoroacetic Acid with Alkynes1 , 1966 .

[24]  M. Hanack,et al.  Untersuchungen an Cyclopropanverbindungen, IX. Cyclopropylketone durch Umlagerung von Allenverbindungen , 1966 .

[25]  K. Griesbaum,et al.  Cyclobutane Compounds. III.1,2 The Ionic Addition of Hydrogen Chloride, Hydrogen Bromide, and Hydrogen Iodide to Allene and Methylacetylene , 1965 .

[26]  C. Grob,et al.  Die Solvolyse von α‐Bromstyrolen Substitution am ungesättigten trigonalen Kohlenstoffatom , 1964 .

[27]  C. Grob,et al.  Die solvoltische Decarboxylierung von α, β‐ungesättigeten β‐Halogensäuren Fragmentierungsreaktionen, 9. Miteilung , 1964 .

[28]  W. Finnegan,et al.  Improved Synthesis of 3,3,3-Trifluoropropyne , 1963 .

[29]  T. L. Jacobs,et al.  The Addition of Hydrogen Chloride to Aliphatic Allenic Hydrocarbons1 , 1960 .

[30]  John Logan Achilles and the King , 1957 .

[31]  E. R. Buchman,et al.  The Thermal Decomposition of (2-Methylenecyclobutyl)-trimethyl-ammonium Hydroxide1 , 1956 .

[32]  K. Schulte,et al.  Zur Kenntnis der Acetylencarbonsäuren, II. Mitteil.): Die Darstellung der Hexinsäure, Pentin‐(4)‐säure und Heptadiin‐(1.6)‐carbonsäure‐(4 , 1954 .

[33]  F. Howard,et al.  Synthesis and physical properties of several acetylenic hydrocarbons , 1954 .

[34]  K. Schulte,et al.  Zur Kenntnis der Acetylencarbonsäuren, I. Mitteil.: Die Darstellung der Hexin‐(5)‐säure , 1953 .

[35]  R. Shriner The Systematic Identification of Organic Compounds: , 1936, Nature.