Dynamic feature-adaptive subdivision

Feature-adaptive subdivision (FAS) is one of the state-of-the art real-time rendering methods for subdivision surfaces on modern GPUs. It enables efficient and accurate rendering of subdivision surfaces in many interactive applications, such as video games or authoring tools. In this paper, we present dynamic feature-adaptive subdivision (DFAS), which improves upon FAS by enabling an independent subdivision depth for every irregularity. Our subdivision kernels fill a dynamic patch buffer on-the-fly with the appropriate number of patches corresponding to the chosen level-of-detail scheme. By reducing the number of generated and processed patches, DFAS significantly improves upon the performance of static FAS.

[1]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[2]  Matthias Nießner,et al.  Analytic displacement mapping using hardware tessellation , 2013, TOGS.

[3]  Jörg Peters,et al.  A realtime GPU subdivision kernel , 2005, SIGGRAPH 2005.

[4]  Jörg Peters,et al.  GPU smoothing of quad meshes , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[5]  Scott Schaefer,et al.  Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, SIGGRAPH 2009.

[6]  Tony DeRose,et al.  Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces , 2012, TOGS.

[7]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[8]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[9]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[10]  Marc Stamminger,et al.  Fast GPU‐based Adaptive Tessellation with CUDA , 2009, Comput. Graph. Forum.

[11]  Henry P. Moreton,et al.  Watertight tessellation using forward differencing , 2001, HWWS '01.

[12]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[13]  Jörg Peters,et al.  Efficient pixel-accurate rendering of curved surfaces , 2012, I3D '12.

[14]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[15]  Jörg Peters,et al.  GPU conversion of quad meshes to smooth surfaces , 2008, SPM '08.

[16]  Charles T. Loop,et al.  Real-time view-dependent rendering of parametric surfaces , 2009, I3D '09.

[17]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.

[18]  Matthias Nießner,et al.  Efficient Evaluation of Semi-Smooth Creases in Catmull-Clark Subdivision Surfaces , 2012, Eurographics.

[19]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[20]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[21]  Jörg Peters,et al.  Efficient substitutes for subdivision surfaces , 2009, SIGGRAPH '09.

[22]  Mohamed S. Ebeida,et al.  Parallel view-dependent tessellation of Catmull-Clark subdivision surfaces , 2009, High Performance Graphics.

[23]  Jeffrey A. Andrews,et al.  Xbox 360 system architecture , 2005 .

[24]  Pat Hanrahan,et al.  DiagSplit: parallel, crack-free, adaptive tessellation for micropolygon rendering , 2009, SIGGRAPH 2009.

[25]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[26]  Jörg Peters,et al.  Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets , 2008, Comput. Graph. Forum.

[27]  Matthias Nießner,et al.  State of the Art Report on Real-time Rendering with Hardware Tessellation , 2014, Eurographics.

[28]  Matthias Nießner,et al.  Rendering Subdivision Surfaces using Hardware Tessellation , 2013 .