Forecasting Using Relative Entropy

The paper describes a relative entropy procedure for imposing moment restrictions on simulated forecast distributions from a variety of models. Starting from an empirical forecast distribution for some variables of interest, the technique generates a new empirical distribution that satisfies a set of moment restrictions. The new distribution is chosen to be as close as possible to the original in the sense of minimizing the associated Kullback-Leibler Information Criterion, or relative entropy. The authors illustrate the technique by using several examples that show how restrictions from other forecasts and from economic theory may be introduced into a model's forecasts.

[1]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[2]  George G. Judge,et al.  Econometric foundations , 2000 .

[3]  Daniel F. Waggoner,et al.  Conditional Forecasts in Dynamic Multivariate Models , 1998, Review of Economics and Statistics.

[4]  E. Maasoumi,et al.  A Dependence Metric for Possibly Nonlinear Processes , 2004 .

[5]  Ellis W. Tallman,et al.  Improving forecasts of the federal funds rate in a policy model , 1999 .

[6]  Yuichi Kitamura,et al.  An Information-Theoretic Alternative to Generalized Method of Moments Estimation , 1997 .

[7]  Robert Parker,et al.  Vector Autoregressions: Forecasting and Reality , 1999 .

[8]  E. Maasoumi A compendium to information theory in economics and econometrics , 1993 .

[9]  F. Foster Bayesian Prediction, Entropy, and Option Pricing In the U.S. Soybean Market, 1993-1997 , 2004 .

[10]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[11]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[12]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[13]  Christopher J. Neely,et al.  Risk Aversion Versus Intertemporal Substitution: A Case Study of Identification Failure in the Intertemporal Consumption, , 1995 .

[14]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[15]  Can VARs describe monetary policy , 1998 .

[16]  A. Hobson Concepts in statistical mechanics , 1971 .

[17]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[18]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[19]  Lars E. O. Svensson Monetary Policy and Learning , 2003 .

[20]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[21]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[22]  L. Hansen,et al.  Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns , 1983, Journal of Political Economy.

[23]  L. Hansen,et al.  Efficient Estimation of Linear Asset Pricing Models with Moving-Average Errors , 1997 .

[24]  C. B. Barry,et al.  New developments in the applications of Bayesian methods : proceedings of the First European Conference sponsored by the Centre européen d'education permanente (CEDEP) and the Institut européen d'administration des affaires (INSEAD), June 1976 , 1978 .

[25]  John C Robertson,et al.  Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis , 2001 .

[26]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[27]  Glenn D. Rudebusch Do Measures of Monetary Policy in a VAR Make Sense , 1998 .

[28]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[29]  John B. Taylor Monetary Policy Rules , 1999 .