Graph‐like compacta: Characterizations and Eulerian loops

A compact graph-like space is a triple $(X,V,E)$ where $X$ is a compact, metrizable space, $V \subseteq X$ is a closed zero-dimensional subset, and $E$ is an index set such that $X \setminus V \cong E \times (0,1)$. New characterizations of compact graph-like spaces are given, connecting them to certain classes of continua, and to standard subspaces of Freudenthal compactifications of locally finite graphs. These are applied to characterize Eulerian graph-like compacta.

[1]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[2]  Henning Bruhn,et al.  Eulerian edge sets in locally finite graphs , 2011, Comb..

[3]  J. van Mill,et al.  The Infinite-Dimensional Topology of Function Spaces , 2001 .

[4]  Reinhard Diestel,et al.  Locally finite graphs with ends: A topological approach, I. Basic theory , 2009, Discret. Math..

[5]  J. J. Charatonik Monotone mappings of universal dendrites , 1991 .

[6]  CARSTEN THOMASSEN,et al.  Graph-like continua, augmenting arcs, and Menger’s theorem , 2008, Comb..

[7]  Reinhard Diestel,et al.  Locally finite graphs with ends: A topological approach, II. Applications , 2010, Discret. Math..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Reinhard Diestel,et al.  On Infinite Cycles I , 2004, Comb..

[10]  Johannes Carmesin,et al.  Infinite Graphic Matroids , 2018, Comb..

[11]  C. Capel Inverse limit spaces , 1954 .

[12]  Agelos Georgakopoulos,et al.  Connected but not path-connected subspaces of infinite graphs , 2007, Comb..

[13]  R. Bruce Richter,et al.  The Planarity Theorems of MacLane and Whitney for Graph-like Continua , 2010, Electron. J. Comb..

[14]  Agelos Georgakopoulos,et al.  Topological Circles and Euler Tours in Locally Finite Graphs , 2009, Electron. J. Comb..

[15]  C. St. J. A. Nash-Williams,et al.  Decomposition of Graphs Into Closed and Endless Chains , 1960 .

[16]  Agelos Georgakopoulos,et al.  On graph-like continua of finite length , 2014, 1401.5946.

[17]  Reinhard Diestel,et al.  The Cycle Space of an Infinite Graph , 2005, Combinatorics, Probability and Computing.

[18]  J. Krasinkiewicz On two theorems of Dyer , 1986 .

[19]  Sam B. Nadler,et al.  Continuum Theory: An Introduction , 1992 .

[20]  Maya Jakobine Stein,et al.  On end degrees and infinite cycles in locally finite graphs , 2007, Comb..