The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.

Prokaryotes constitute a single kingdom, Bacteria, here divided into two new subkingdoms: Negibacteria, with a cell envelope of two distinct genetic membranes, and Unibacteria, comprising the new phyla Archaebacteria and Posibacteria, with only one. Other new bacterial taxa are established in a revised higher-level classification that recognizes only eight phyla and 29 classes. Morphological, palaeontological and molecular data are integrated into a unified picture of large-scale bacterial cell evolution despite occasional lateral gene transfers. Archaebacteria and eukaryotes comprise the clade neomura, with many common characters, notably obligately co-translational secretion of N-linked glycoproteins, signal recognition particle with 7S RNA and translation-arrest domain, protein-spliced tRNA introns, eight-subunit chaperonin, prefoldin, core histones, small nucleolar ribonucleoproteins (snoRNPs), exosomes and similar replication, repair, transcription and translation machinery. Eubacteria (posibacteria and negibacteria) are paraphyletic, neomura having arisen from Posibacteria within the new subphylum Actinobacteria (possibly from the new class Arabobacteria, from which eukaryotic cholesterol biosynthesis probably came). Replacement of eubacterial peptidoglycan by glycoproteins and adaptation to thermophily are the keys to neomuran origins. All 19 common neomuran character suites probably arose essentially simultaneously during the radical modification of an actinobacterium. At least 11 were arguably adaptations to thermophily. Most unique archaebacterial characters (prenyl ether lipids; flagellar shaft of glycoprotein, not flagellin; DNA-binding protein lob; specially modified tRNA; absence of Hsp90) were subsequent secondary adaptations to hyperthermophily and/or hyperacidity. The insertional origin of protein-spliced tRNA introns and an insertion in proton-pumping ATPase also support the origin of neomura from eubacteria. Molecular co-evolution between histones and DNA-handling proteins, and in novel protein initiation and secretion machineries, caused quantum evolutionary shifts in their properties in stem neomura. Proteasomes probably arose in the immediate common ancestor of neomura and Actinobacteria. Major gene losses (e.g. peptidoglycan synthesis, hsp90, secA) and genomic reduction were central to the origin of archaebacteria. Ancestral archaebacteria were probably heterotrophic, anaerobic, sulphur-dependent hyperthermoacidophiles; methanogenesis and halophily are secondarily derived. Multiple lateral gene transfers from eubacteria helped secondary archaebacterial adaptations to mesophily and genome re-expansion. The origin from a drastically altered actinobacterium of neomura, and the immediately subsequent simultaneous origins of archaebacteria and eukaryotes, are the most extreme and important cases of quantum evolution since cells began. All three strikingly exemplify De Beer's principle of mosaic evolution: the fact that, during major evolutionary transformations, some organismal characters are highly innovative and change remarkably swiftly, whereas others are largely static, remaining conservatively ancestral in nature. This phenotypic mosaicism creates character distributions among taxa that are puzzling to those mistakenly expecting uniform evolutionary rates among characters and lineages. The mixture of novel (neomuran or archaebacterial) and ancestral eubacteria-like characters in archaebacteria primarily reflects such vertical mosaic evolution, not chimaeric evolution by lateral gene transfer. No symbiogenesis occurred. Quantum evolution of the basic neomuran characters, and between sister paralogues in gene duplication trees, makes many sequence trees exaggerate greatly the apparent age of archaebacteria. Fossil evidence is compelling for the extreme antiquity of eubacteria [over 3500 million years (My)] but, like their eukaryote sisters, archaebacteria probably arose only 850 My ago. Negibacteria are the most ancient, radiating rapidly into six phyla. Evidence from molecular sequences, ultrastructure, evolution of photosynthesis, envelope structure and chemistry and motility mechanisms fits the view that the cenancestral cell was a photosynthetic negibacterium, specifically an anaerobic green non-sulphur bacterium, and that the universal tree is rooted at the divergence between sulphur and non-sulphur green bacteria. The negibacterial outer membrane was lost once only in the history of life, when Posibacteria arose about 2800 My ago after their ancestors diverged from Cyanobacteria.

[1]  Hong Xue,et al.  An Abundant DNA Binding Protein from the Hyperthermophilic Archaeon Sulfolobus shibatae Affects DNA Supercoiling in a Temperature-Dependent Fashion , 2000, Journal of bacteriology.

[2]  H. Toh,et al.  Functional Interactions of a Homolog of Proliferating Cell Nuclear Antigen with DNA Polymerases inArchaea , 1999, Journal of bacteriology.

[3]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[4]  T. Embley,et al.  Early branching eukaryotes? , 1998, Current opinion in genetics & development.

[5]  M. Gouy,et al.  A nonhyperthermophilic common ancestor to extant life forms. , 1999, Science.

[6]  H Philippe,et al.  Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. , 2000, Science.

[7]  Steven K. Baum,et al.  Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model , 2000, Nature.

[8]  Carl R. Woese,et al.  Archaebacteria and Cellular Origins: An Overview , 1982 .

[9]  F. Soyer,et al.  Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. , 1998, Microbiology.

[10]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[11]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[12]  J. Hall,et al.  Evolution of the prokaryotes. , 1971, Journal of theoretical biology.

[13]  J. Reeve,et al.  Origin of the Eukaryotic Nucleus , 1998, Science.

[14]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[15]  W. Doolittle,et al.  Introns, the broken transposons. , 1994, Society of General Physiologists series.

[16]  P. Haug,et al.  Traces of archaebacteria in ancient sediments , 1986 .

[17]  G. McFadden Mergers and acquisitions: malaria and the great chloroplast heist , 2000, Genome Biology.

[18]  W. Doolittle,et al.  Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. , 1998, Molecular biology and evolution.

[19]  Ernst Mayr,et al.  Principles of systematic zoology , 1969 .

[20]  Y Av-Gay,et al.  The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. , 2000, Trends in microbiology.

[21]  Y. Peer,et al.  Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. , 2000, Gene.

[22]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[23]  J. Steitz,et al.  Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs , 1997, Cell.

[24]  Yangrae Cho,et al.  Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Forterre Thermoreduction, a hypothesis for the origin of prokaryotes. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[26]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[27]  A. Reysenbach,et al.  Microbiology of ancient and modern hydrothermal systems. , 2001, Trends in microbiology.

[28]  S. Granick Evolution of Heme and Chlorophyll , 1965 .

[29]  W. Doolittle,et al.  Phylogenetic analyses of two "archaeal" genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. , 2001, Molecular biology and evolution.

[30]  J. Logsdon,et al.  Thermotoga heats up lateral gene transfer. , 1999, Current biology : CB.

[31]  Julie Grantham,et al.  Eukaryotic type II chaperonin CCT interacts with actin through specific subunits , 1999, Nature.

[32]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[33]  P. Forterre,et al.  The Rooting of the Universal Tree of Life Is Not Reliable , 1999, Journal of Molecular Evolution.

[34]  W. Ford Doolittle,et al.  Genes in pieces: were they ever together? , 1978, Nature.

[35]  Hervé Philippe,et al.  The Root of the Tree of Life in the Light of the Covarion Model , 1999, Journal of Molecular Evolution.

[36]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[38]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Brasier The Cambrian explosion and the slow burning fuse , 2000, Science progress.

[40]  N. Glansdorff,et al.  The Evolutionary History of Carbamoyltransferases: A Complex Set of Paralogous Genes Was Already Present in the Last Universal Common Ancestor , 1999, Journal of Molecular Evolution.

[41]  J. Reeve,et al.  Archaeal Histones, Nucleosomes, and Transcription Initiation , 1997, Cell.

[42]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[43]  M. Sal,et al.  Spirochete periplasmic flagella and motility. , 2000, Journal of molecular microbiology and biotechnology.

[44]  Dong-Guk Shin,et al.  Horizontal Transfer of Archaeal Genes into the Deinococcaceae: Detection by Molecular and Computer-Based Approaches , 2000, Journal of Molecular Evolution.

[45]  James A. Lake,et al.  Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences , 1988, Nature.

[46]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[47]  T. Cavalier-smith,et al.  The skeletal function of non‐genic nuclear DNA: new evidence from ancient cell chimaeras , 2004, Genetica.

[48]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[49]  S. Burley,et al.  Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Chadwick,et al.  Secondary metabolites: their function and evolution. , 1992 .

[51]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[52]  E. Freundt,et al.  PROPOSAL FOR MOLLICUTES AS NAME OF THE CLASS ESTABLISHED FOR THE ORDER MYCOPLASMATALES , 1967 .

[53]  C R Woese,et al.  An archaeal genomic signature. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Cohen-bazire,et al.  Phototrophic prokaryotes: the cyanobacteria. , 1977, Annual review of microbiology.

[55]  E. Kershaw,et al.  Division A , 1891 .

[56]  M. Landthaler,et al.  Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[58]  D. Kelly,et al.  A sterol biosynthetic pathway in Mycobacterium , 1998, FEBS letters.

[59]  M. Levy,et al.  The stability of the RNA bases: implications for the origin of life. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Cavalier-smith Membrane heredity, symbiogenesis, and the multiple origins of algae , 1995 .

[61]  W. Doolittle,et al.  Lateral genomics. , 1999, Trends in cell biology.

[62]  Professor Dr. Martino Rizzotti Early Evolution , 2000, Birkhäuser Basel.

[63]  D. Bhattacharya,et al.  PHYLOGENY OF THE BANGIOPHYCIDAE (RHODOPHYTA) AND THE SECONDARY ENDOSYMBIOTIC ORIGIN OF ALGAL PLASTIDS , 2000 .

[64]  D. Moreira,et al.  Respiratory Chains in the Last Common Ancestor of Living Organisms , 1999, Journal of Molecular Evolution.

[65]  P. Dennis,et al.  RNA Polymerase of Aquifex pyrophilus: Implications for the Evolution of the Bacterial rpoBC Operon and Extremely Thermophilic Bacteria , 1999, Journal of Molecular Evolution.

[66]  Michael Radermacher,et al.  3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin , 1999, Nature Structural Biology.

[67]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[68]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[69]  D. Ruggero,et al.  Cis‐acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus , 1999, Molecular microbiology.

[70]  L. V. Valen,et al.  The Archaebacteria and eukaryotic origins , 1980, Nature.

[71]  H. Philippe,et al.  Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. , 1999, Molecular biology and evolution.

[72]  P. Forterre A Hot Topic: The Origin of Hyperthermophiles , 1996, Cell.

[73]  S H Kim,et al.  Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Lidstrom,et al.  C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. , 1998, Science.

[75]  W. Doolittle,et al.  Origin and evolution of the slime molds (Mycetozoa) , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  C. Woese On the evolution of cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Palmer,et al.  Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. , 2000, Molecular biology and evolution.

[78]  T. Cavalier-smith,et al.  Intron phylogeny: a new hypothesis. , 1991, Trends in genetics : TIG.

[79]  E. Conway de Macario,et al.  Discontinuous Occurrence of the hsp70(dnaK) Gene among Archaea and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein , 1999, Journal of bacteriology.

[80]  C. Woese,et al.  Were the original eubacteria thermophiles? , 1987, Systematic and applied microbiology.

[81]  B. Paquin,et al.  Origin and evolution of group I introns in cyanobacterial tRNA genes , 1997, Journal of bacteriology.

[82]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[83]  Robert Eugene Blankenship Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers , 2004, Antonie van Leeuwenhoek.

[84]  W. Doolittle,et al.  Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. , 2000, Trends in genetics : TIG.

[85]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[86]  S. Edmondson,et al.  The hyperthermophile chromosomal protein Sac7d sharply kinks DNA , 1998, Nature.

[87]  M. Madigan,et al.  The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene , 1997, Archives of Microbiology.

[88]  D Penny,et al.  Early evolution: prokaryotes, the new kids on the block. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[89]  T. Cavalier-smith,et al.  Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.

[90]  Masaru Tomita,et al.  Analysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various prokaryotes , 1999, Bioinform..

[91]  M. Kelly The Great Chain of Being: A Study of the History of an Idea , 1937, Philosophy.

[92]  P. Thier,et al.  The origin of red algae and the evolution of chloroplasts , 2022 .

[93]  A. Maxwell,et al.  Conversion of DNA gyrase into a conventional type II topoisomerase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[95]  C. de Duve,et al.  The birth of complex cells. , 1996, Scientific American.

[96]  C. Cambillau,et al.  Structural and Genomic Correlates of Hyperthermostability* , 2000, The Journal of Biological Chemistry.

[97]  E. Mayr Two empires or three? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  E. Stackebrandt,et al.  Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” , 1988 .

[99]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[100]  U. Sleytr,et al.  S-Layer Proteins , 2000, Journal of bacteriology.

[101]  Purificación López-García,et al.  DNA Supercoiling and Temperature Adaptation: A Clue to Early Diversification of Life? , 1999, Journal of Molecular Evolution.

[102]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[103]  F J Ayala,et al.  Tempo and mode in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  G. Blobel,et al.  Intracellular protein topogenesis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[106]  H. Hotani,et al.  Polymorphic transition in bacterial flagella. , 1982, Symposia of the Society for Experimental Biology.

[107]  R. Weinberg,et al.  The catalytic subunit of yeast telomerase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. Doolittle,et al.  Archaea and the Origin(s) of DNA Replication Proteins , 1997, Cell.

[109]  M. Gouy,et al.  Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. , 1997, Molecular biology and evolution.

[110]  N. Pace,et al.  Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring , 1998, Journal of bacteriology.

[111]  K. Stetter,et al.  Characterization of a novel lipid A containing D-galacturonic acid that replaces phosphate residues. The structure of the lipid a of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. , 2000, The Journal of biological chemistry.

[112]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Cavalier-smith,et al.  Selfish DNA and the origin of introns , 1985, Nature.

[114]  M. F. White,et al.  A Novel Member of the Bacterial-Archaeal Regulator Family Is a Nonspecific DNA-binding Protein and Induces Positive Supercoiling* , 2001, The Journal of Biological Chemistry.

[115]  J. L. King,et al.  Non-Darwinian evolution. , 1969, Science.

[116]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[117]  Philip Hugenholtz,et al.  Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity , 1998, Journal of bacteriology.

[118]  E. Delong,et al.  A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[119]  M. Madigan,et al.  Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endospore-forming heliobacteria from rice field soils , 1996, Archives of Microbiology.

[120]  J. Maupin-Furlow,et al.  Archaeal proteasomes: proteolytic nanocompartments of the cell. , 2001, Advances in applied microbiology.

[121]  W. Martin Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[122]  T. Cavalier-smith,et al.  Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[123]  H. Phillipe The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .

[124]  Geoffrey I. McFadden,et al.  Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny , 1996 .

[125]  Y. Watanabe,et al.  Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. , 2000, Nucleic acids research.

[126]  N. Pace,et al.  Expanding the Known Diversity and Environmental Distribution of an Uncultured Phylogenetic Division of Bacteria , 2000, Applied and Environmental Microbiology.

[127]  G. Olsen,et al.  Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? , 1999, Trends in genetics : TIG.

[128]  Radhey S. Gupta,et al.  The Natural Evolutionary Relationships among Prokaryotes , 2000, Critical reviews in microbiology.

[129]  Radhey S. Gupta Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes , 1998, Microbiology and Molecular Biology Reviews.

[130]  T. Cavalier-smith Genetic Symbionts And The Origin Of Split Genes And Linear Chromosomes , 1983 .

[131]  John Kuriyan,et al.  Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA , 1994, Cell.

[132]  H. Reichenbach,et al.  Steroids from the Myxobacterium Nannocystis exedens , 1983 .

[133]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[134]  J. Dacks,et al.  Origin of H1 linker histones , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[135]  M. W. Gray,et al.  Pseudouridine in RNA: What, Where, How, and Why , 2000, IUBMB life.

[136]  Russell F. Doolittle,et al.  Microbial genomes opened up , 1998, Nature.

[137]  N. Kyrpides,et al.  Universally conserved translation initiation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[138]  E. Koonin,et al.  Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. , 2001, Genome research.

[139]  R. Doolittle,et al.  Evolutionary anomalies among the aminoacyl-tRNA synthetases. , 1998, Current opinion in genetics & development.

[140]  D. Spencer,et al.  Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes , 1991, Nature.

[141]  Gary J. Olsen,et al.  Ribosomal RNA phylogeny and the primary lines of evolutionary descent , 1986, Cell.

[142]  B. Hall,et al.  Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[143]  T. Cavalier-smith,et al.  Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence , 1996 .

[144]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[145]  R. N. Ivanovsky,et al.  Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. , 1999, Microbiology.

[146]  W. Doolittle,et al.  Uprooting the tree of life. , 2000, Scientific American.

[147]  C. Woese There must be a prokaryote somewhere: microbiology's search for itself. , 1994, Microbiological reviews.

[148]  R. Huber,et al.  Early evolution of cytochrome bc complexes. , 2000, Journal of molecular biology.

[149]  A. Knoll,et al.  A bangiophyte red alga from the Proterozoic of arctic Canada. , 1990, Science.

[150]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[151]  J. Schopf Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[152]  H Philippe,et al.  Where is the root of the universal tree of life? , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[153]  F. Hartl,et al.  Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT , 2000, Current Biology.

[154]  F J Ayala,et al.  Molecular clock mirages. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[155]  E V Koonin,et al.  SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. , 2000, Nucleic acids research.

[156]  B. Ganem RNA world , 1987, Nature.

[157]  G. Shields,et al.  Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna , 1997 .

[158]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[159]  C. Woese,et al.  Are archaebacteria merely derived ‘prokaryotes’? , 1981, Nature.

[160]  Nicola Mason,et al.  Elongation arrest is a physiologically important function of signal recognition particle , 2000, The EMBO journal.

[161]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[162]  H. Saibil,et al.  The thermosome: chaperonin with a built-in lid , 1998, Nature Structural Biology.

[163]  R. Raff,et al.  Molecular phylogeny of the animal kingdom. , 1988, Science.

[164]  P. Albrecht,et al.  Polar Lipids of Archaebacteria in Sediments and Petroleums , 1982, Science.

[165]  W. Fitch,et al.  An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution , 1970, Biochemical Genetics.

[166]  W. Baumeister,et al.  Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum , 1998, FEBS letters.

[167]  T. Cavalier-smith,et al.  The origin of cells: a symbiosis between genes, catalysts, and membranes. , 1987, Cold Spring Harbor symposia on quantitative biology.

[168]  A. Knoll,et al.  Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon , 2000, Paleobiology.

[169]  J. Michiels,et al.  Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-related protein. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[170]  R. Bernander Chromosome replication, nucleoid segregation and cell division in archaea. , 2000, Trends in microbiology.

[171]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[172]  M. Walsh,et al.  Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa , 1985, Nature.

[173]  J. Palmer,et al.  Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. , 1996, Molecular biology and evolution.

[174]  R. Redfield Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. , 1993, The Journal of heredity.

[175]  James R. Brown,et al.  Gene Descent, Duplication, and Horizontal Transfer in the Evolution of Glutamyl- and Glutaminyl-tRNA Synthetases , 1999, Journal of Molecular Evolution.

[176]  R. Page Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. , 2000, Molecular phylogenetics and evolution.

[177]  Michael Reith,et al.  The highly reduced genome of an enslaved algal nucleus , 2001, Nature.

[178]  Robert Eugene Blankenship Molecular evidence for the evolution of photosynthesis. , 2001, Trends in plant science.

[179]  F. Wieland,et al.  Sulfated Dolicholphosphate Oligosaccharides are Transiently Methylated during Biosynthesis of Halobacterial Glycoproteins , 1986 .

[180]  Detlef D. Leipe,et al.  Did DNA replication evolve twice independently? , 1999, Nucleic acids research.

[181]  H. Klenk,et al.  DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: Branching topology of the archaeal domain , 1994, Journal of Molecular Evolution.

[182]  C. Bauer,et al.  Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[183]  M. Tomita,et al.  Computer analyses of complete genomes suggest that some archaebacteria employ both eukaryotic and eubacterial mechanisms in translation initiation. , 1999, Gene.

[184]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[185]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[187]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[188]  A. Driessen,et al.  Adaptations of the archaeal cell membrane to heat stress. , 2000, Frontiers in bioscience : a journal and virtual library.

[189]  Peer Bork,et al.  Lateral Gene Transfer, Genome Surveys, and the Phylogeny of Prokaryotes , 1999 .

[190]  P. Forterre,et al.  Universal tree of life , 1993, Nature.

[191]  W. Doolittle,et al.  Recurrent paralogy in the evolution of archaeal chaperonins , 1999, Current Biology.

[192]  A. Weiner,et al.  Another Bridge between Kingdoms: tRNA Splicing in Archaea and Eukaryotes , 1997, Cell.

[193]  T. Cavalier-smith Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis , 2001, Journal of Molecular Evolution.

[194]  R. Doolittle The origins and evolution of eukaryotic proteins. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[195]  M. Sogin,et al.  MOLECULAR EVOLUTIONARY ANALYSIS OF THE CHROMOPHYTA , 1992 .

[196]  T. Cavalier-smith Bacteria and eukaryotes , 1992, Nature.

[197]  J. Olson,et al.  Evolution of reaction centers in photosynthetic prokaryotes. , 1987, International review of cytology.

[198]  Manfred Schidlowski,et al.  Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept , 2001 .

[199]  Simonetta Gribaldo,et al.  The Root of the Universal Tree of Life Inferred from Anciently Duplicated Genes Encoding Components of the Protein-Targeting Machinery , 1998, Journal of Molecular Evolution.

[200]  J. Palmer,et al.  The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron , 2000, Current Genetics.

[201]  E. Delong,et al.  Dibiphytanyl Ether Lipids in Nonthermophilic Crenarchaeotes , 1998, Applied and Environmental Microbiology.

[202]  W. Doolittle,et al.  Archaea: narrowing the gap between prokaryotes and eukaryotes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[203]  J. Kirschvink,et al.  Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[204]  K. Drlica,et al.  Prokaryotic and eukaryotic chromosomes: what's the difference? , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[205]  J. Logsdon,et al.  The recent origins of spliceosomal introns revisited. , 1998, Current opinion in genetics & development.

[206]  John Kuriyan,et al.  Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: A sliding DNA clamp , 1992, Cell.

[207]  W. Doolittle,et al.  The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways , 2000, Molecular microbiology.

[208]  J. Bordet,et al.  L'évolution physiologique : étude des pertes de fonctions chez les microorganismes , 1944 .

[209]  T. Werner,et al.  tRNA genes of Streptomyces lividans: new sequences and comparison of structure and organization with those of other bacteria , 1994, Journal of bacteriology.

[210]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[211]  T. Cavalier-smith,et al.  The nucleo morph genomes of cryptophytes and chlorarachniophytes. , 2000, Protist.

[212]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[213]  T. Cavalier-smith,et al.  Phylogeny of Ultra-Rapidly Evolving Dinoflagellate Chloroplast Genes: A Possible Common Origin for Sporozoan and Dinoflagellate Plastids , 2000, Journal of Molecular Evolution.

[214]  K. Jarrell,et al.  Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. , 1994, Canadian journal of microbiology.

[215]  W. Ludwig,et al.  Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. , 2000, International journal of systematic and evolutionary microbiology.

[216]  S. A. Barnett,et al.  The major features of evolution , 1955 .

[217]  M. Levy,et al.  Peptide nucleic acids rather than RNA may have been the first genetic molecule. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[218]  N. Glansdorff,et al.  About the last common ancestor, the universal life‐tree and lateral gene transfer: a reappraisal , 2000, Molecular microbiology.

[219]  G. McFadden,et al.  The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[220]  Sarah A. Teichmann,et al.  Is There a Phylogenetic Signal in Prokaryote Proteins? , 1999, Journal of Molecular Evolution.

[221]  C. R. Goward,et al.  Purification and properties of DNA polymerase from Bacillus caldotenax. , 1992, Biochemical Journal.

[222]  G. McFadden,et al.  Evolutionary Relationship Between Translation Initiation Factor eIF-2γ and Selenocysteine-Specific Elongation Factor SELB: Change of Function in Translation Factors , 1998, Journal of Molecular Evolution.

[223]  Hervé Le Nagard,et al.  Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. , 1999, Genetics.

[224]  T. Thomas,et al.  Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. , 2000, Journal of molecular biology.

[225]  C. Gualerzi,et al.  Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation , 2000, The EMBO journal.

[226]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[227]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[228]  B. Carlson,et al.  A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs , 2000, The EMBO journal.

[229]  M. Brasier,et al.  A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. , 1998, Geology.

[230]  T. Cavalier-smith Origins of secondary metabolism. , 2007, Ciba Foundation symposium.

[231]  M. Beaton,et al.  Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[232]  J. T. Staley,et al.  Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter , 1997, Antonie van Leeuwenhoek.

[233]  G. Ourisson,et al.  Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus. , 2005, European journal of biochemistry.

[234]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[235]  N. Pace,et al.  Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[236]  R. B. Jensen,et al.  Plasmid and chromosome segregation in prokaryotes. , 2000, Trends in microbiology.

[237]  L. Margulis Five-kingdom classification and the origin and evolution of cells , 1974 .

[238]  J. Gogarten,et al.  The Prokaryote-to-Eukaryote Transition Reflected in the Evolution of the V/F/A-ATPase Catalytic and Proteolipid Subunits , 1998, Journal of Molecular Evolution.

[239]  T. Cavalier-smith,et al.  The kingdoms of organisms , 1986, Nature.

[240]  M. O’Donnell,et al.  The ring-type polymerase sliding clamp family , 2001, Genome Biology.

[241]  T. Cavalier-smith,et al.  Molecular Chaperones Encoded by a Reduced Nucleus: The Cryptomonad Nucleomorph , 2001, Journal of Molecular Evolution.

[242]  F. Tabita,et al.  The “Green” Form I Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase from the Nonsulfur Purple BacteriumRhodobacter capsulatus , 1999, Journal of bacteriology.

[243]  G. McFadden,et al.  Origins of microsporidia. , 1998, Trends in microbiology.

[244]  N. V. Ugol’kova,et al.  [On the mechanism of autotrophic fixation of carbone dioxide by Chloroflexus aurantiacus]. , 2000, Микробиология.

[245]  N. Barton,et al.  Genetic hitchhiking. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[246]  Betsey Dexter Dyer,et al.  The origin of eukaryotic cells , 1985 .

[247]  Michael S. Y. Lee Molecular Clock Calibrations and Metazoan Divergence Dates , 1999, Journal of Molecular Evolution.

[248]  C. Woese Interpreting the universal phylogenetic tree. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[249]  S. Offner,et al.  Eight of Fourteen gvp Genes Are Sufficient for Formation of Gas Vesicles in Halophilic Archaea , 2000, Journal of bacteriology.

[250]  T. Cavalier-smith A 6-Klngdom Classification And A Unified Phylogeny , 1983 .

[251]  H Philippe,et al.  Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. , 2000, Trends in genetics : TIG.

[252]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[253]  P. Carbon,et al.  The selenocysteine insertion sequence binding protein SBP is different from the Y-box protein dbpB. , 2000, Biochimie.

[254]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[255]  James T. Staley,et al.  Bergey's Manual of Determinative Bacteriology , 1939 .

[256]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[257]  W. Doolittle,et al.  Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. , 2000, Molecular biology and evolution.

[258]  S. Wolin,et al.  Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. , 2000, Genes & development.

[259]  R. Gupta Life's third domain (Archaea): an established fact or an endangered paradigm? , 1998, Theoretical population biology.

[260]  N. Kyrpides,et al.  Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[261]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[262]  Purificación López-García,et al.  Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis , 1998, Journal of Molecular Evolution.

[263]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[264]  J. Kowalak,et al.  The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. , 1994, Biochemistry.

[265]  J D Palmer,et al.  Intron "sliding" and the diversity of intron positions. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[266]  T. Fujiwara,et al.  SBP, SECIS binding protein, binds to the RNA fragment upstream of the Sec UGA codon in glutathione peroxidase mRNA , 2000, Molecular Biology Reports.

[267]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[268]  C. Woese,et al.  Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes , 1987, Nature.

[269]  B. Green Was “molecular opportunism” a factor in the evolution of different photosynthetic light-harvesting pigment systems? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[270]  R. Stanier,et al.  The concept of a bacterium , 2004, Archiv für Mikrobiologie.

[271]  P. Leadlay,et al.  A bacterial calcium-binding protein homologous to calmodulin , 1987, Nature.

[272]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[273]  T. Cavalier-smith,et al.  Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. , 1978, Journal of cell science.

[274]  Norman R. Pace,et al.  Origin of life-facing up to the physical setting , 1991, Cell.

[275]  T. Cavalier-smith The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.

[276]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[277]  M. Belfort,et al.  Retrotransposition of a bacterial group II intron , 2000, Nature.

[278]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[279]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[280]  W. Martin,et al.  Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis. , 1998, Gene.

[281]  Russell F. Doolittle,et al.  Converting Amino Acid Alignment Scores into Measures of Evolutionary Time: A Simulation Study of Various Relationships , 1997, Journal of Molecular Evolution.

[282]  M. Sogin,et al.  PHYLOGENY OF GRACILARIA LEMANEIFORMIS (RHODOPHYTA) BASED ON SEQUENCE ANALYSIS OF ITS SMALL SUBUNIT RIBOSOMAL RNA CODING REGION 1 , 1990 .

[283]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[284]  B. Hall,et al.  Long-branch attraction and the rDNA model of early eukaryotic evolution. , 1999, Molecular biology and evolution.

[285]  C R Woese,et al.  An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[286]  E V Koonin,et al.  Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. , 2001, Genome research.

[287]  F. Hartl,et al.  Structure of the Molecular Chaperone Prefoldin Unique Interaction of Multiple Coiled Coil Tentacles with Unfolded Proteins , 2000, Cell.

[288]  D. M. Ward,et al.  Biosynthetic Controls on the 13C Contents of Organic Components in the Photoautotrophic Bacterium Chloroflexus aurantiacus * , 2001, The Journal of Biological Chemistry.

[289]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[290]  The origin of nuclei and of eukaryotic cells. , 1975, Nature.

[291]  R. Keenan,et al.  SRP--Where the RNA and Membrane Worlds Meet , 2000, Science.

[292]  T. Mukhtar,et al.  Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis , 1999, Molecular microbiology.

[293]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[294]  W. Doolittle,et al.  Cytoskeletal proteins: The evolution of cell division , 1998, Current Biology.