Regeneration of optic fibres through the chiasma in Xenopus laevis tadpoles

[1]  S. Easter,et al.  The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract. , 1989, Development.

[2]  R. L. Levine Organization of astrocytes in the visual pathways of the goldfish: An immunohistochemical study , 1989, The Journal of comparative neurology.

[3]  W. Stell,et al.  Immunocytochemical and morphological evidence for a retinopetal projection in anuran amphibians , 1988, The Journal of comparative neurology.

[4]  L. McLoon,et al.  Transient expression of laminin in the optic nerve of the developing rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  R. L. Levine,et al.  Studies of the early stages of optic axon regeneration in the goldfish , 1988, The Journal of comparative neurology.

[6]  R. M. Gaze,et al.  A developmental and ultrastructural study of the optic chiasma in Xenopus. , 1988, Development.

[7]  R. Guillery,et al.  Changing glial organization relates to changing fiber order in the developing optic nerve of ferrets , 1987, The Journal of comparative neurology.

[8]  J. Winter,et al.  The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons. , 1987, Developmental biology.

[9]  J. Taylor,et al.  Fibre organization and reorganization in the retinotectal projection of Xenopus. , 1987, Development.

[10]  J. Scholes,et al.  Glial domains and nerve fiber patterns in the fish retinotectal pathway , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Fawcett Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis. , 1985, Journal of embryology and experimental morphology.

[12]  J. M. Hopkins,et al.  Laminin and optic nerve regeneration in the goldfish , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. Silver,et al.  Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet. , 1984, Developmental biology.

[14]  J W Fawcett,et al.  Fibre order in the normal Xenopus optic tract, near the chiasma. , 1984, Journal of embryology and experimental morphology.

[15]  P. Grant,et al.  Development of the optic nerve in Xenopus laevis. I. Early development and organization. , 1982, Journal of embryology and experimental morphology.

[16]  F. Scalia,et al.  Long‐term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina , 1981, The Journal of comparative neurology.

[17]  R. M. Gaze,et al.  The diencephalic course of regenerating retinotectal fibres in Xenopus tadpoles. , 1978, Journal of embryology and experimental morphology.

[18]  J. Adams,et al.  Technical considerations on the use of horseradish peroxidase as a neuronal marker , 1977, Neuroscience.

[19]  M. Singer,et al.  The ultrastructure of regeneration in the severed newt optic nerve. , 1974, The Journal of experimental zoology.

[20]  P. Reier,et al.  Regeneration and remyelination ofXenopus tadpole optic nerve fibres following transection or crush , 1974, Journal of neurocytology.

[21]  R. M. Gaze,et al.  The development, structure and composition of the optic nerve of Xenopus laevis (Daudin). , 1961, Quarterly journal of experimental physiology and cognate medical sciences.

[22]  J. Faber,et al.  Normal Table of Xenopus Laevis (Daudin) , 1958 .

[23]  R. M. Gaze,et al.  The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis , 2004, Anatomy and Embryology.

[24]  J. Cronly-Dillon,et al.  Glial fibrillary acidic protein (GFAP) from goldfish: Its localisation in visual pathway , 1989, Glia.