Fixed points of a generalized smoothing transformation and applications to the branching random walk
暂无分享,去创建一个
[1] Quansheng Liu. Sur Une Équation Fonctionnelle Et SES Applications: Une Extension Du Théorème De Kesten-Stigum Concernant Des Processus De Branchement , 1997, Advances in Applied Probability.
[2] Quansheng Liu. The exact hausdorff dimension of a branching set , 1996 .
[3] Edward C. Waymire,et al. Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .
[4] U. Rösler. A fixed point theorem for distributions , 1992 .
[5] Pierre Collet,et al. Large deviations for multiplicative chaos , 1992 .
[6] A. M. Zubkov,et al. Branching processes. I , 1987 .
[7] K. Falconer. Cut-set sums and tree processes , 1987 .
[8] Ilya Molchanov,et al. Random fractals , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] Harry Cohn,et al. A Martingale Approach to Supercritical (CMJ) Branching Processes , 1985 .
[10] R. Durrett,et al. Fixed points of the smoothing transformation , 1983 .
[11] H. Cohn. Norming constants for the finite mean supercritical Bellman-Harris process , 1982 .
[12] Thomas M. Liggett,et al. Generalized potlatch and smoothing processes , 1981 .
[13] J. Geluk. Π-regular variation , 1981 .
[14] J. Biggins,et al. Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.
[15] J. Kahane,et al. Sur certaines martingales de Benoit Mandelbrot , 1976 .
[16] N. Bingham,et al. Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.
[17] N. Bingham,et al. Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.
[18] E. Seneta. Regularly varying functions in the theory of simple branching processes , 1974, Advances in Applied Probability.
[19] R. Doney. On a functional equation for general branching processes , 1973, Journal of Applied Probability.
[20] R. Doney,et al. A limit theorem for a class of supercritical branching processes , 1972, Journal of Applied Probability.
[21] K. Athreya. A note on a functional equation arising in Galton-Watson branching processes , 1971, Journal of Applied Probability.
[22] C. C. Heyde,et al. EXTENSION OF A RESULT OF SENETA FOR THE SUPER-CRITICAL GALTON-WATSON PROCESS , 1970 .
[23] E. Seneta. On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .
[24] Charles J. Mode,et al. A general age-dependent branching process. II , 1968 .
[25] H. Kesten,et al. A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .
[26] W. Feller. An Introduction to Probability Theory and Its Applications , 1959 .
[27] Uwe Rr Osler. A Fixed Point Theorem for Distributions , 1999 .
[28] Andreas E. Kyprianou,et al. SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .
[29] A. Rouault,et al. Boltzmann-Gibbs weights in the branching random walk , 1997 .
[30] Andreas E. Kyprianou,et al. Branching Random Walk: Seneta-Heyde norming , 1996 .
[31] Quansheng Liu. The Growth of an Entire Characteristic Fonction and the Tail Probabilities of the Limit of a Tree Martingale , 1996 .
[32] J. Franchi. Chaos multiplicatif: un traitement simple et complet de la fonction de partition , 1995 .
[33] Quansheng Liu. Sur quelques problemes a propos de processus de branchement, des flots dans les reseaux et des mesures de hausdorff associees , 1993 .
[34] J. Kahane. Multiplications aléatoires et dimensions de Hausdorff , 1987 .
[35] R. Mauldin,et al. Random recursive constructions: asymptotic geometric and topological properties , 1986 .
[36] G. Royer. Distance de Fortet-Mourier et fonctions log-concaves , 1984 .
[37] E. Seneta. Functional equations and the Galton-Watson process , 1969, Advances in Applied Probability.
[38] R. Fortet,et al. Convergence de la répartition empirique vers la répartition théorique , 1953 .