Fixed points of a generalized smoothing transformation and applications to the branching random walk

Let {A i : i ≥ 1} be a sequence of non-negative random variables and let M be the class of all probability measures on [0,∞]. Define a transformation T on M by letting Tμ be the distribution of ∑ i=1 ∞ A i Z i , where the Z i are independent random variables with distribution μ, which are also independent of {A i }. Under first moment assumptions imposed on {A i }, we determine exactly when T has a non-trivial fixed point (of finite or infinite mean) and we prove that all fixed points have regular variation properties; under moment assumptions of order 1 + ε, ε > 0, we find all the fixed points and we prove that all non-trivial fixed points have stable-like tails. Convergence theorems are given to ensure that each non-trivial fixed point can be obtained as a limit of iterations (by T) with an appropriate initial distribution; convergence to the trivial fixed points δ0 and δ∞ is also examined, and a result like the Kesten-Stigum theorem is established in the case where the initial distribution has the same tails as a stable law. The problem of convergence with an arbitrary initial distribution is also considered when there is no non-trivial fixed point. Our investigation has applications in the study of: (a) branching processes; (b) invariant measures of some infinite particle systems; (c) the model for turbulence of Yaglom and Mandelbrot; (d) flows in networks and Hausdorff measures in random constructions; and (e) the sorting algorithm Quicksort. In particular, it turns out that the basic functional equation in the branching random walk always has a non-trivial solution.

[1]  Quansheng Liu Sur Une Équation Fonctionnelle Et SES Applications: Une Extension Du Théorème De Kesten-Stigum Concernant Des Processus De Branchement , 1997, Advances in Applied Probability.

[2]  Quansheng Liu The exact hausdorff dimension of a branching set , 1996 .

[3]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[4]  U. Rösler A fixed point theorem for distributions , 1992 .

[5]  Pierre Collet,et al.  Large deviations for multiplicative chaos , 1992 .

[6]  A. M. Zubkov,et al.  Branching processes. I , 1987 .

[7]  K. Falconer Cut-set sums and tree processes , 1987 .

[8]  Ilya Molchanov,et al.  Random fractals , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Harry Cohn,et al.  A Martingale Approach to Supercritical (CMJ) Branching Processes , 1985 .

[10]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[11]  H. Cohn Norming constants for the finite mean supercritical Bellman-Harris process , 1982 .

[12]  Thomas M. Liggett,et al.  Generalized potlatch and smoothing processes , 1981 .

[13]  J. Geluk Π-regular variation , 1981 .

[14]  J. Biggins,et al.  Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.

[15]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[16]  N. Bingham,et al.  Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.

[17]  N. Bingham,et al.  Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.

[18]  E. Seneta Regularly varying functions in the theory of simple branching processes , 1974, Advances in Applied Probability.

[19]  R. Doney On a functional equation for general branching processes , 1973, Journal of Applied Probability.

[20]  R. Doney,et al.  A limit theorem for a class of supercritical branching processes , 1972, Journal of Applied Probability.

[21]  K. Athreya A note on a functional equation arising in Galton-Watson branching processes , 1971, Journal of Applied Probability.

[22]  C. C. Heyde,et al.  EXTENSION OF A RESULT OF SENETA FOR THE SUPER-CRITICAL GALTON-WATSON PROCESS , 1970 .

[23]  E. Seneta On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .

[24]  Charles J. Mode,et al.  A general age-dependent branching process. II , 1968 .

[25]  H. Kesten,et al.  A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .

[26]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[27]  Uwe Rr Osler A Fixed Point Theorem for Distributions , 1999 .

[28]  Andreas E. Kyprianou,et al.  SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .

[29]  A. Rouault,et al.  Boltzmann-Gibbs weights in the branching random walk , 1997 .

[30]  Andreas E. Kyprianou,et al.  Branching Random Walk: Seneta-Heyde norming , 1996 .

[31]  Quansheng Liu The Growth of an Entire Characteristic Fonction and the Tail Probabilities of the Limit of a Tree Martingale , 1996 .

[32]  J. Franchi Chaos multiplicatif: un traitement simple et complet de la fonction de partition , 1995 .

[33]  Quansheng Liu Sur quelques problemes a propos de processus de branchement, des flots dans les reseaux et des mesures de hausdorff associees , 1993 .

[34]  J. Kahane Multiplications aléatoires et dimensions de Hausdorff , 1987 .

[35]  R. Mauldin,et al.  Random recursive constructions: asymptotic geometric and topological properties , 1986 .

[36]  G. Royer Distance de Fortet-Mourier et fonctions log-concaves , 1984 .

[37]  E. Seneta Functional equations and the Galton-Watson process , 1969, Advances in Applied Probability.

[38]  R. Fortet,et al.  Convergence de la répartition empirique vers la répartition théorique , 1953 .