Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates

[1]  C. Bush Complex carbohydrates in drug research: Structural and functional aspects: Edited by K Bock and H. Clausen, Munksgaard, Copenhagen, Denmark, 1994. ISBN 87-16-11229-6, 451 pp plus index, DKK 400 , 1996 .

[2]  I. Brockhausen,et al.  Control of mucin synthesis: the peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan core 1 UDPgalactose:N-acetyl-alpha-galactosaminyl-R beta 3-galactosyltransferase. , 1990, Biochemistry.

[3]  L. Tabak,et al.  Purification, cloning, and expression of a bovine UDP-GalNAc: polypeptide N-acetyl-galactosaminyltransferase. , 1993, The Journal of biological chemistry.

[4]  H. Paulsen,et al.  Eine neue Strategie zur Festphasensynthese von O‐Glycopeptiden über 2‐Azidoglycopeptide , 1994 .

[5]  J. Young,et al.  Enzymic O-glycosylation of synthetic peptides from sequences in basic myelin protein. , 1979, Biochemistry.

[6]  M. Gross,et al.  N-acetylgalactosamine glycosylation of MUC1 tandem repeat peptides by pancreatic tumor cell extracts. , 1994, Cancer research.

[7]  R. Hill,et al.  Purification and characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. , 1992, The Journal of biological chemistry.

[8]  F. Homa,et al.  Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. , 1993, The Journal of biological chemistry.

[9]  M. Meldal,et al.  Multiple-column solid-phase glycopeptide synthesis , 1991 .

[10]  M. Meldal,et al.  Multiple column peptide synthesis, Part 2 (1, 2). , 2009, International journal of peptide and protein research.

[11]  R. Hill,et al.  Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues. , 1988, The Journal of biological chemistry.

[12]  I. Brockhausen,et al.  Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. , 1991, Cancer research.

[13]  H. Paulsen,et al.  Anwendung des Azid‐Glycopeptidsynthese‐ Verfahrens in der multiplen Festphasensynthese zur Gewinnung von O‐Glycopeptiden des Mucin‐Typs , 1994 .

[14]  A. F. Bradbury,et al.  Substrate recognition by UDP-N-acetyl-α-d-galactosamine: polypeptide N-acetyl-α-d-galactosaminyltransferase. Effects of chain length and disulphide bonding of synthetic peptide substrates , 1988 .

[15]  R. Hill,et al.  The acceptor substrate specificity of porcine submaxillary UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is dependent on the amino acid sequences adjacent to serine and threonine residues. , 1993, The Journal of biological chemistry.

[16]  M. Meldal,et al.  Synthesis of the glycosyl amino acids Nα-Fmoc-Ser[Ac4-β-d-Gal p-(1 → 3)-Ac2-α-d-GalN3 p]-OPfp and Nα-Fmoc-Thr[Ac4-β-d-Gal p-(1 → 3)-Ac2-α-d-GalN3 p]-OPfp and the application in the solid-phase peptide synthesis of multiply glycosylated mucin peptides with Tn and T antigenic structures , 1995 .

[17]  I. Brockhausen,et al.  UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. , 1994, European journal of biochemistry.

[18]  S. Kornfeld,et al.  Purification and characterization of UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. , 1986, The Journal of biological chemistry.

[19]  P. Roepstorff,et al.  UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities. , 1995, The Journal of biological chemistry.

[20]  L. Tabak,et al.  The influence of flanking sequence on the O-glycosylation of threonine in vitro. , 1992, The Journal of biological chemistry.

[21]  T. Cruz,et al.  Identification of the major sites of enzymic glycosylation of myelin basic protein. , 1983, Biochimica et biophysica acta.

[22]  G von Heijne,et al.  Amino acid distributions around O-linked glycosylation sites. , 1991, The Biochemical journal.

[23]  J. Roth,et al.  Subcellular organization of glycosylation in mammalian cells. , 1987, Biochimica et biophysica acta.

[24]  S. P. Andrews,et al.  Investigation of the requirements for O-glycosylation by bovine submaxillary gland UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosamine transferase using synthetic peptide substrates. , 1981, The Journal of biological chemistry.

[25]  R. Poorman,et al.  The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. , 1993, The Journal of biological chemistry.

[26]  P. Fraser,et al.  The glycosylation of human myelin basic protein at threonines 95 and 98 occurs sequentially. , 1988, Biochimica et biophysica acta.

[27]  L. Tabak,et al.  The influence of flanking sequences on O-glycosylation. , 1991, Biochemical and biophysical research communications.

[28]  E. Bennett,et al.  Purification and cDNA Cloning of a Human UDP-N-acetyl-α- D-galactosamine:polypeptide N-Acetylgalactosaminyltransferase (*) , 1995, The Journal of Biological Chemistry.

[29]  T. Kawasaki,et al.  Purification and characterization of UDP-GalNAc:polypeptide N-acetylgalactosamine transferase from an ascites hepatoma, AH 66. , 1982, The Journal of biological chemistry.

[30]  P. W. Kent,et al.  Polypeptide N-acetylgalactosaminyltransferase activity in tracheal epithelial microsomes. , 1992, The Biochemical journal.