An Energy-Efficient Multiwire Error Control Scheme for Reliable On-Chip Interconnects Using Hamming Product Codes

We propose an energy-efficient error control scheme for on-chip interconnects capable of correcting a combination of multiple random and burst errors. The iterative decoding method, interleaver, using two-dimensional Hamming product codes and a simplified type-II hybrid ARQ, achieves several orders of magnitude improvement in residual flit-error rate for multiwire errors and up to 45% improvement in throughput in high noise environments. For a given system reliability requirement, the proposed error control scheme yields up to 50% energy improvement over other error correction schemes. The low overhead of our approach makes it suitable for implementation in on-chip interconnect switches.

[1]  Mary Jane Irwin,et al.  Adapative Error Protection for Energy Efficiency , 2003, ICCAD 2003.

[2]  Pasi Liljeberg,et al.  Online Reconfigurable Self-Timed Links for Fault Tolerant NoC , 2007, VLSI Design.

[3]  Naresh R. Shanbhag,et al.  Coding for system-on-chip networks: a unified framework , 2005, IEEE Trans. Very Large Scale Integr. Syst..

[4]  Wayne P. Burleson,et al.  Thermal Impacts on NoC Interconnects , 2007, First International Symposium on Networks-on-Chip (NOCS'07).

[5]  Chung-Ho Chen,et al.  A Systematic Approach for Parallel CRC Computations , 2001, J. Inf. Sci. Eng..

[6]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[7]  Luca Benini,et al.  Analysis of error recovery schemes for networks on chips , 2005, IEEE Design & Test of Computers.

[8]  Luca Benini,et al.  Error control schemes for on-chip communication links: the energy-reliability tradeoff , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Axel Jantsch,et al.  A fault model notation and error-control scheme for switch-to-switch buses in a network-on-chip , 2003, First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721).

[10]  F. Chiaraluce,et al.  Extended Hamming product codes analytical performance evaluation for low error rate applications , 2004, IEEE Transactions on Wireless Communications.

[11]  S. Borkar,et al.  An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[12]  Cristian Constantinescu,et al.  Trends and Challenges in VLSI Circuit Reliability , 2003, IEEE Micro.

[13]  Luca Benini,et al.  Networks on chips - technology and tools , 2006, The Morgan Kaufmann series in systems on silicon.

[14]  Cecilia Metra,et al.  Configurable Error Control Scheme for NoC Signal Integrity , 2007, 13th IEEE International On-Line Testing Symposium (IOLTS 2007).

[15]  Ken Sakamura Future SOC Possibilities , 2002, IEEE Micro.

[16]  Axel Jantsch,et al.  Power analysis of link level and end-to-end data protection in networks on chip , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[17]  Shu Lin,et al.  Automatic-repeat-request error-control schemes , 1984, IEEE Communications Magazine.

[18]  M. J. Irwin,et al.  Adaptive error protection for energy efficiency , 2003, ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486).

[19]  Partha Pratim Pande,et al.  Design of Low power & Reliable Networks on Chip through joint crosstalk avoidance and forward error correction coding , 2006, 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[20]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[21]  Russell Tessier,et al.  Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuits , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[22]  Shu Lin,et al.  Error Control Coding , 2004 .

[23]  David Wentzlaff,et al.  Energy characterization of a tiled architecture processor with on-chip networks , 2003, ISLPED '03.

[24]  SUDHAKAR M. REDDY,et al.  Easily Testable Cellular Realizations for the (Exactly P)-out-of n and (p or More)-out-of n Logic Functions , 1974, IEEE Transactions on Computers.

[25]  Massimo Violante,et al.  Early evaluation of bus interconnects dependability for system-on-chip designs , 2001, VLSI Design 2001. Fourteenth International Conference on VLSI Design.

[26]  F. Caignet,et al.  The challenge of signal integrity in deep-submicrometer CMOS technology , 2001, Proc. IEEE.

[27]  K. Sakamura Making computers invisible , 2002, IEEE Micro.

[28]  Giovanni De Micheli,et al.  A robust self-calibrating transmission scheme for on-chip networks , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[29]  Naresh R. Shanbhag,et al.  Toward achieving energy efficiency in presence of deep submicron noise , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[30]  Cecilia Metra,et al.  Exploiting ECC redundancy to minimize crosstalk impact , 2005, IEEE Design & Test of Computers.

[31]  W. Dally,et al.  Route packets, not wires: on-chip interconnection networks , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[32]  L. Benini,et al.  Xpipes: a network-on-chip architecture for gigascale systems-on-chip , 2004, IEEE Circuits and Systems Magazine.

[33]  Partha Pratim Pande,et al.  Performance evaluation and design trade-offs for network-on-chip interconnect architectures , 2005, IEEE Transactions on Computers.

[34]  Bashir M. Al-Hashimi,et al.  Joint consideration of fault-tolerance, energy-efficiency and performance in on-chip networks , 2007 .

[35]  Sammy Chan,et al.  Iterative decoding of multi-dimensional concatenated single parity check codes , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).