Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy

[1]  C. Reimer,et al.  Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy , 2020, Communications Physics.

[2]  S. Diddams,et al.  Intra-pulse difference frequency generation spanning 7 to 14 µm with a 1-GHz mode-locked laser comb , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[3]  M. Fejer,et al.  Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[4]  G. Roelkens,et al.  An on-chip III-V-semiconductor-on-silicon laser frequency comb for gas-phase molecular spectroscopy in real-time , 2020, 2006.15113.

[5]  P. Schunemann,et al.  Mid-infrared frequency combs at 10  GHz. , 2020, Optics letters.

[6]  G. Rieker,et al.  11-μs time-resolved, continuous dual-comb spectroscopy with spectrally filtered mode-locked frequency combs , 2020, 2005.13050.

[7]  K. Vahala,et al.  Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared , 2020, Optica.

[8]  S. Diddams,et al.  Mid-Infrared Frequency Comb Generation and Spectroscopy with Few-Cycle Pulses and χ^{(2)} Nonlinear Optics. , 2018, Physical review letters.

[9]  Christopher T. Phare,et al.  Broadband Ultrahigh-Resolution chip-scale Scanning Soliton Dual-Comb Spectroscopy , 2020, 2001.00869.

[10]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[11]  Scott A. Diddams,et al.  Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides , 2019, Optica.

[12]  M. Fejer,et al.  Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides , 2019, Optica.

[13]  T. Kippenberg,et al.  Nanophotonic Supercontinuum based Mid-Infrared Dual-Comb Spectroscopy , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[14]  Jérôme Faist,et al.  On-chip mid-infrared and THz frequency combs for spectroscopy , 2019, Applied Physics Letters.

[15]  Theodor W. Hänsch,et al.  Frequency comb spectroscopy , 2019, Nature Photonics.

[16]  E. Kort,et al.  Interpreting contemporary trends in atmospheric methane , 2019, Proceedings of the National Academy of Sciences.

[17]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[18]  Amanda S. Makowiecki,et al.  Broadband dual-frequency comb spectroscopy in a rapid compression machine. , 2018, Optics express.

[19]  T. Hänsch,et al.  Mid-infrared feed-forward dual-comb spectroscopy , 2018, Proceedings of the National Academy of Sciences.

[20]  K. Vahala,et al.  Microresonator soliton dual-comb imaging , 2018, Optica.

[21]  M. Gorodetsky,et al.  Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons. , 2018, Physical review letters.

[22]  Gerard Wysocki,et al.  Computational coherent averaging for free-running dual-comb spectroscopy. , 2018, Optics express.

[23]  Martin M. Fejer,et al.  Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides , 2018, Optica.

[24]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[25]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[26]  P. Schunemann,et al.  Molecular fingerprinting with bright, broadband infrared frequency combs , 2018, Optica.

[27]  S. Cundiff,et al.  Optimum repetition rates for dual-comb spectroscopy. , 2018, Optics express.

[28]  Michael L. Gorodetsky,et al.  Spatial multiplexing of soliton microcombs , 2018, Nature Photonics.

[29]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[30]  Kerry J. Vahala,et al.  Gigahertz-repetition-rate soliton microcombs , 2018 .

[31]  Esther Baumann,et al.  High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm , 2017, 1709.07105.

[32]  Michal Lipson,et al.  On-chip dual-comb source for spectroscopy , 2016, Science Advances.

[33]  Michal Lipson,et al.  Silicon-chip-based mid-infrared dual-comb spectroscopy , 2016, Nature Communications.

[34]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[35]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[36]  K. Vahala,et al.  Counter-propagating solitons in microresonators , 2017, Nature Photonics.

[37]  Ming Yan,et al.  Mid-infrared dual-comb spectroscopy with electro-optic modulators , 2017, Light, science & applications.

[38]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[39]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[40]  Feng Zhu,et al.  Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air , 2015 .

[41]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[42]  Tom Gardiner,et al.  Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. , 2013, Optics letters.

[43]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[44]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[45]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[46]  I. Coddington,et al.  Spectroscopy of the methane {nu}{sub 3} band with an accurate midinfrared coherent dual-comb spectrometer , 2011, 1110.1401.

[47]  G. Villanueva,et al.  Ethane in planetary and cometary atmospheres: Transmittance and fluorescence models of the ν7 band at 3.3 μm , 2011 .

[48]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[49]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[50]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[51]  Ronald M. Aarts Low-complexity tracking and estimation of frequency and amplitude of sinusoids , 2004, Digit. Signal Process..