Classical isomorphisms of types

The study of isomorphisms of types has, in the main, been carried out in an intuitionistic setting. We extend some of this work to classical logic for both call-by-name and call-by-value computations by means of polarised linear logic and game semantics. This leads to equational characterisations of these isomorphisms for all the propositional connectives.

[1]  Roberto Di Cosmo,et al.  Remarks on isomorphisms in typed lambda calculi with empty and sum types , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[2]  Jens Palsberg,et al.  Efficient and Flexible Matching of Recursive Types , 2001, Inf. Comput..

[3]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[4]  Lou van den Dries,et al.  Exponential rings, exponential polynomials and exponential functions , 1984 .

[5]  Christopher League Review of Isomorphisms of Types:: from λ-calculus to information retrieval and language design by Roberto Di Cosmo (Birkhauser, 1995) , 1997, SIGA.

[6]  S. Solov′ev The category of finite sets and Cartesian closed categories , 1983 .

[7]  Olivier Laurent Syntax vs. semantics: A polarized approach , 2005, Theor. Comput. Sci..

[8]  Mariangiola Dezani-Ciancaglini,et al.  Characterization of Normal Forms Possessing Inverse in the lambda-beta-eta-Calculus , 1976, Theor. Comput. Sci..

[9]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[10]  Thomas Ehrhard,et al.  Believe it or not, AJM's games model is a model of classical linear logic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[11]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[12]  David Delahaye,et al.  Recherche dans une bibliothèque de preuves Coq en utilisant le type et modulo isomorphismes , 1997 .

[13]  Vincent Danos,et al.  LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication , 1995 .

[14]  Paul Blain Levy,et al.  Call-by-Push-Value: A Subsuming Paradigm , 1999, TLCA.

[15]  Peter Selinger,et al.  Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.

[16]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[17]  Russell Harmer Games and full abstraction for non-deterministic languages , 1999 .

[18]  Mikael Rittri,et al.  Using types as search keys in function libraries , 1989, Journal of Functional Programming.

[19]  Samson Abramsky,et al.  Full Abstraction for Idealized Algol with Passive Expressions , 1999, Theor. Comput. Sci..

[20]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[21]  Roberto Di Cosmo,et al.  Provable isomorphisms of types , 1992, Mathematical Structures in Computer Science.

[22]  Vincent Padovani Retracts in Simple Types , 2001, TLCA.

[23]  Angus Macintyre,et al.  Schanuel's Conjecture and Free Exponential Rings , 1991, Ann. Pure Appl. Log..

[24]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[25]  Gilles Barthe,et al.  Type Isomorphisms and Proof Reuse in Dependent Type Theory , 2001, FoSSaCS.

[26]  Roberto Di Cosmo,et al.  Isomorphisms of Types , 1995, Progress in Theoretical Computer Science.

[27]  Roberto Di Cosmo,et al.  A Linear Logical View of Linear Type Isomorphisms , 1999, CSL.

[28]  Samson Abramsky,et al.  Concurrent games and full completeness , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[29]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .