Multipartite entanglement detection for hypergraph states

We study the entanglement properties of quantum hypergraph states of $n$ qubits, focusing on multipartite entanglement. We compute multipartite entanglement for hypergraph states with a single hyperedge of maximum cardinality, for hypergraph states endowed with all possible hyperedges of cardinality equal to $n-1$ and for those hypergraph states with all possible hyperedges of cardinality greater than or equal to $n-1$. We then find a lower bound to the multipartite entanglement of a generic quantum hypergraph state. We finally apply the multipartite entanglement results to the construction of entanglement witness operators, able to detect genuine multipartite entanglement in the neighbourhood of a given hypergraph state. We first build entanglement witnesses of the projective type, then propose a class of witnesses based on the stabilizer formalism, hence called stabilizer witnesses, able to reduce the experimental effort from an exponential to a linear growth in the number of local measurement settings with the number of qubits.

[1]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[2]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[3]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  M. Lewenstein,et al.  Distributed quantum dense coding. , 2004, Physical review letters.

[6]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[7]  Barbara Kraus,et al.  Local entanglability and multipartite entanglement , 2009 .

[8]  C. Macchiavello,et al.  Scale invariance of entanglement dynamics in Grover's quantum search algorithm , 2013 .

[9]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[10]  Otfried Gühne,et al.  Extreme Violation of Local Realism in Quantum Hypergraph States. , 2015, Physical review letters.

[11]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[12]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[13]  C. Macchiavello,et al.  Entanglement and nonclassical properties of hypergraph states , 2014, 1404.6492.

[14]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[15]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[16]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[17]  Ri Qu,et al.  Encoding hypergraphs into quantum states , 2013 .

[18]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[19]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[21]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[22]  C. Macchiavello,et al.  Multipartite entanglement in quantum algorithms , 2010, 1007.4179.