Study of Random Dopant Fluctuation Effects in Germanium-Source Tunnel FETs

The effects of random dopant fluctuations (RDFs) on the performance of Germanium-source tunnel field-effect transistors (TFETs) is studied using 3-D device simulation. The RDF in the source region is found to have the most impact on threshold voltage variation (σ<i>V</i><sub>TH</sub>) if the source is moderately doped (10<sup>19</sup> cm<sup>-3</sup>) such that vertical tunneling within the source is dominant. If the source is heavily doped (10<sup>20</sup> cm<sup>-3</sup>) such that lateral tunneling from the source to the channel is dominant, the impact of RDF in the channel region is also significant. RDF-induced threshold voltage variation (σ<i>V</i><sub>TH</sub>) for an optimally designed Ge-source TFET is relatively modest (σ<i>V</i><sub>TH</sub> <; 20 mV at <i>Lg</i> = 30 nm), compared with a MOSFET of similar gate length. Supply voltage scaling is not beneficial for reducing TFET σ<i>V</i><sub>TH</sub>.

[1]  A. Asenov Simulation of Statistical Variability in Nano MOSFETs , 2007, 2007 IEEE Symposium on VLSI Technology.

[2]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[3]  G. Groeseneken,et al.  Analytical model for point and line tunneling in a tunnel field-effect transistor , 2008, 2008 International Conference on Simulation of Semiconductor Processes and Devices.

[4]  Tsu-Jae King Liu,et al.  Tunnel Field Effect Transistor With Raised Germanium Source , 2010, IEEE Electron Device Letters.

[5]  G. Amaratunga,et al.  Silicon surface tunnel transistor , 1995 .

[6]  Changhwan Shin,et al.  Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET , 2009, IEEE Transactions on Electron Devices.

[7]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[8]  C. Hu,et al.  Germanium-source tunnel field effect transistors with record high ION/IOFF , 2006, 2009 Symposium on VLSI Technology.

[9]  Hei Kam,et al.  MOSFET Replacement Devices for Energy-Efficient Digital Integrated Circuits , 2009 .

[10]  Sung Hwan Kim,et al.  Impact of Body Doping and Thickness on the Performance of Germanium-Source TFETs , 2010, IEEE Transactions on Electron Devices.

[11]  N. Sano,et al.  Role of long-range and short-range Coulomb potentials in threshold characteristics under discrete dopants in sub-0.1 /spl mu/m Si-MOSFETs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[12]  K. Boucart,et al.  Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric , 2007 .

[13]  Adrian M. Ionescu,et al.  A new definition of threshold voltage in Tunnel FETs , 2008 .

[14]  K. Saraswat,et al.  Ge (100) and (111) N- and P-FETs With High Mobility and Low- $T$ Mobility Characterization , 2009, IEEE Transactions on Electron Devices.

[15]  David Blaauw,et al.  Ultralow-voltage, minimum-energy CMOS , 2006, IBM J. Res. Dev..

[16]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .

[17]  Marcel J. M. Pelgrom,et al.  Transistor matching in analog CMOS applications , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[18]  I. Eisele,et al.  Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the δp+ Layer , 2004 .

[19]  Qin Zhang,et al.  Low-subthreshold-swing tunnel transistors , 2006, IEEE Electron Device Letters.

[20]  K. Boucart,et al.  A simulation-based study of sensitivity to parameter fluctuations of silicon Tunnel FETs , 2010, 2010 Proceedings of the European Solid State Device Research Conference.