Mechanisms of gamma oscillations.

Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.

[1]  H. L. Andrews,et al.  BRAIN POTENTIALS AND VOLUNTARY MUSCLE ACTIVITY IN MAN , 1938 .

[2]  E. Adrian Olfactory reactions in the brain of the hedgehog , 1942, The Journal of physiology.

[3]  D. Giannitrapani Electroencephalographic Differences between Resting and Mental Multiplication , 1966 .

[4]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[5]  J. Banquet Spectral analysis of the EEG in meditation. , 1973, Electroencephalography and clinical neurophysiology.

[6]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[7]  E. Halgren,et al.  Responses of human limbic neurons to induced changes in blood gases , 1977, Brain Research.

[8]  B. L. Bird,et al.  Biofeedback training of 40-Hz EEG in humans , 1978, Biofeedback and self-regulation.

[9]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[10]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[11]  L. S. Leung,et al.  Nonlinear feedback model of neuronal populations in hippocampal CAl region. , 1982, Journal of neurophysiology.

[12]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[13]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[14]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[15]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[16]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[17]  L. S. Leung,et al.  Fast (beta) rhythms in the hippocampus: A review , 1992, Hippocampus.

[18]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[19]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Deschenes,et al.  Voltage-dependent 40-Hz * oscillations in rat reticular thalamic neurons in vivo , 1992, Neuroscience.

[21]  U. Eysel,et al.  Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition , 1993, The Journal of comparative neurology.

[22]  X. Wang,et al.  Ionic basis for intrinsic 40 Hz neuronal oscillations. , 1993, Neuroreport.

[23]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[24]  M. Deschenes,et al.  Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. , 1993, Journal of neurophysiology.

[25]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[26]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[27]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[28]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[29]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[30]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[32]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[33]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[34]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[36]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[37]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[38]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[39]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[40]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[41]  O Jensen,et al.  Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. , 1996, Learning & memory.

[42]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[43]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[44]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[45]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[46]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[47]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[48]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[49]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[50]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[51]  G B Ermentrout,et al.  Fine structure of neural spiking and synchronization in the presence of conduction delays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[53]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[54]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[55]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[56]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[57]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[58]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[59]  R. Llinás,et al.  Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[61]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G Curio,et al.  Linking 600-Hz “Spikelike” EEG/MEG Wavelets (“&sfgr;-Bursts”) to Cellular Substrates: Concepts and Caveats , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[63]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[64]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[65]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[66]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[67]  Miles A. Whittington,et al.  Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice , 2001, Neuron.

[68]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[69]  O. Bertrand,et al.  Oscillatory Synchrony between Human Extrastriate Areas during Visual Short-Term Memory Maintenance , 2001, The Journal of Neuroscience.

[70]  Partha P. Mitra,et al.  Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials , 2000, Neural Computation.

[71]  Peter Brown,et al.  Oscillatory Local Field Potentials Recorded from the Subthalamic Nucleus of the Alert Rat , 2002, Experimental Neurology.

[72]  R. Traub,et al.  Axonal Gap Junctions Between Principal Neurons: A Novel Source of Network Oscillations, and Perhaps Epileptogenesis , 2002, Reviews in the neurosciences.

[73]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[74]  G. Ermentrout,et al.  Chapter 1 - Mechanisms of Phase-Locking and Frequency Control in Pairs of Coupled Neural Oscillators* , 2002 .

[75]  Roger D. Traub,et al.  Long-Range Synchronization of γ and β Oscillations and the Plasticity of Excitatory and Inhibitory Synapses: A Network Model , 2002 .

[76]  Xiao-Jing Wang,et al.  Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. , 2002, Journal of neurophysiology.

[77]  Miles A Whittington,et al.  Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. , 2002, Journal of neurophysiology.

[78]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[79]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[80]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[81]  G. Buzsáki,et al.  Hippocampal network patterns of activity in the mouse , 2003, Neuroscience.

[82]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[83]  Kenneth D Harris,et al.  Selective Impairment of Hippocampal Gamma Oscillations in Connexin-36 Knock-Out Mouse In Vivo , 2003, The Journal of Neuroscience.

[84]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[85]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[86]  Leslie M Kay,et al.  Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. , 2003, Journal of integrative neuroscience.

[87]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[88]  R. Traub,et al.  Distinct Roles for the Kainate Receptor Subunits GluR5 and GluR6 in Kainate-Induced Hippocampal Gamma Oscillations , 2004, The Journal of Neuroscience.

[89]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[90]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[91]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[92]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[93]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[94]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[95]  A. Lutz,et al.  Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[97]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[98]  Ad Aertsen,et al.  Synaptic integration in rat frontal cortex shaped by network activity. , 2005, Journal of neurophysiology.

[99]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[100]  J. Fell,et al.  Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task , 2005, Hippocampus.

[101]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[102]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[103]  J. Lisman The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme , 2005, Hippocampus.

[104]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[105]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[106]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[107]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[108]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[109]  J. Palva,et al.  Phase Synchrony among Neuronal Oscillations in the Human Cortex , 2005, The Journal of Neuroscience.

[110]  F. Fujiyama,et al.  Demonstration of long‐range GABAergic connections distributed throughout the mouse neocortex , 2005, The European journal of neuroscience.

[111]  Walter J. Freeman,et al.  Definitions of state variables and state space for brain-computer interface , 2007, Cognitive Neurodynamics.

[112]  N. Crone,et al.  High-frequency gamma oscillations and human brain mapping with electrocorticography. , 2006, Progress in brain research.

[113]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[114]  G. Buzsáki Rhythms of the brain , 2006 .

[115]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[116]  Sean M Montgomery,et al.  Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations , 2006, Neuron.

[117]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[118]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[119]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[120]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[121]  O. Jensen,et al.  Cross-frequency coupling between neuronal oscillations , 2007, Trends in Cognitive Sciences.

[122]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[123]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[124]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[125]  N. Busch,et al.  Gamma amplitudes are coupled to theta phase in human EEG during visual perception. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[126]  Ovidiu F. Jurjuţ,et al.  The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. , 2008, Journal of neurophysiology.

[127]  Adriano B. L. Tort,et al.  Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task , 2008, Proceedings of the National Academy of Sciences.

[128]  Michael X. Cohen,et al.  Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making , 2009, Journal of Cognitive Neuroscience.

[129]  H. Robinson,et al.  Recurrent Synaptic Input and the Timing of Gamma-Frequency-Modulated Firing of Pyramidal Cells during Neocortical “UP” States , 2008, The Journal of Neuroscience.

[130]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[131]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[132]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[133]  Sean M Montgomery,et al.  Theta and Gamma Coordination of Hippocampal Networks during Waking and Rapid Eye Movement Sleep , 2008, The Journal of Neuroscience.

[134]  J. O’Neill,et al.  Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus , 2008, The Journal of Neuroscience.

[135]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[136]  H. Robinson,et al.  Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells. , 2009, Journal of neurophysiology.

[137]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[138]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[139]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[140]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[141]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[142]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[143]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[144]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[145]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[146]  Norbert Hájos,et al.  Network mechanisms of gamma oscillations in the CA3 region of the hippocampus , 2009, Neural Networks.

[147]  D. Paré,et al.  Coherent gamma oscillations couple the amygdala and striatum during learning , 2009, Nature Neuroscience.

[148]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[149]  R. Knight,et al.  Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks , 2010, Front. Hum. Neurosci..

[150]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[151]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[152]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[153]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[154]  G. Buzsáki,et al.  Intrinsic Circuit Organization and Theta–Gamma Oscillation Dynamics in the Entorhinal Cortex of the Rat , 2010, The Journal of Neuroscience.

[155]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[156]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[157]  Wolfgang Klimesch,et al.  Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task , 2010, Neurobiology of Learning and Memory.

[158]  Xiao-Jing Wang,et al.  Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas , 2010, The Journal of Neuroscience.

[159]  Dennis L Barbour,et al.  Nonuniform High-Gamma (60–500 Hz) Power Changes Dissociate Cognitive Task and Anatomy in Human Cortex , 2011, The Journal of Neuroscience.

[160]  A. Sirota,et al.  Early Gamma Oscillations Synchronize Developing Thalamus and Cortex , 2011, Science.

[161]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[162]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[163]  G. Buzsáki,et al.  A 4 Hz Oscillation Adaptively Synchronizes Prefrontal, VTA, and Hippocampal Activities , 2011, Neuron.

[164]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[165]  Alain Destexhe,et al.  Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs , 2011, Proceedings of the National Academy of Sciences.

[166]  Carmena Jose,et al.  Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies , 2011 .

[167]  Jesse Jackson,et al.  Fast and Slow Gamma Rhythms Are Intrinsically and Independently Generated in the Subiculum , 2011, The Journal of Neuroscience.

[168]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[169]  L. Finkel,et al.  Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus , 2011, The Journal of Neuroscience.

[170]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[171]  L. Richards,et al.  Faculty Opinions recommendation of Early γ oscillations synchronize developing thalamus and cortex. , 2011 .

[172]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[173]  Bruce G Cumming,et al.  Decision-related activity in sensory neurons: correlations among neurons and with behavior. , 2012, Annual review of neuroscience.

[174]  Mark F Bear,et al.  The pathophysiology of fragile X (and what it teaches us about synapses). , 2012, Annual review of neuroscience.

[175]  B. Barres,et al.  The complement system: an unexpected role in synaptic pruning during development and disease. , 2012, Annual review of neuroscience.

[176]  C. S. Green,et al.  Brain plasticity through the life span: learning to learn and action video games. , 2012, Annual review of neuroscience.

[177]  Mark Hübener,et al.  Critical-period plasticity in the visual cortex. , 2012, Annual review of neuroscience.

[178]  John A. White,et al.  Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition , 2012, PLoS Comput. Biol..