Using Robinson-Foulds supertrees in divide-and-conquer phylogeny estimation

One of the Grand Challenges in Science is the construction of the Tree of Life , an evolutionary tree containing several million species, spanning all life on earth. However, the construction of the Tree of Life is enormously computationally challenging, as all the current most accurate methods are either heuristics for NP -hard optimization problems or Bayesian MCMC methods that sample from tree space. One of the most promising approaches for improving scalability and accuracy for phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping subsets, trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we present Exact-RFS-2, the first polynomial-time algorithm to find an optimal supertree of two trees, using the Robinson-Foulds Supertree (RFS) criterion (a major approach in supertree estimation that is related to maximum likelihood supertrees), and we prove that finding the RFS of three input trees is NP -hard. Exact-RFS-2 is available in open source form on Github at https://github.com/yuxilin51/GreedyRFS .

[1]  Satish Rao,et al.  Quartets MaxCut: A Divide and Conquer Quartets Algorithm , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[2]  Mark Wilkinson,et al.  Majority-rule supertrees. , 2007, Systematic biology.

[3]  Mike Steel,et al.  The complexity of the median procedure for binary trees , 1994 .

[4]  Nadia Pisanti,et al.  30th Annual Symposium on Combinatorial Pattern Matching , 2019 .

[5]  P. Erdös,et al.  Local Quartet Splits of a Binary Tree Infer All Quartet Splits Via One Dyadic Inference Rule , 1996, Comput. Artif. Intell..

[6]  Tandy Warnow,et al.  FastMulRFS: fast and accurate species tree estimation under generic gene duplication and loss models , 2020, Bioinformatics.

[7]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[8]  Oliver Eulenstein,et al.  The shape of supertrees to come: tree shape related properties of fourteen supertree methods. , 2005, Systematic biology.

[9]  Huw A. Ogilvie,et al.  Computational Performance and Statistical Accuracy of *BEAST and Comparisons with Other Methods , 2015, Systematic biology.

[10]  David Fernández-Baca,et al.  Fixed-Parameter Algorithms for Finding Agreement Supertrees , 2012, SIAM J. Comput..

[11]  David Fernández-Baca,et al.  Robinson-Foulds Supertrees , 2010, Algorithms for Molecular Biology.

[12]  Tandy Warnow,et al.  FastMulRFS: Fast and accurate species tree estimation under generic gene duplication and loss models , 2020, Bioinform..

[13]  Roderic D. M. Page,et al.  Modified Mincut Supertrees , 2002, WABI.

[14]  Tandy J. Warnow,et al.  A few logs suffice to build (almost) all trees (I) , 1999, Random Struct. Algorithms.

[15]  François Nicolas,et al.  Improved Parameterized Complexity of the Maximum Agreement Subtree and Maximum Compatible Tree Problems , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Tandy J. Warnow,et al.  FastRFS: fast and accurate Robinson-Foulds Supertrees using constrained exact optimization , 2016, Bioinform..

[17]  Tandy Warnow,et al.  ASTRID: Accurate Species TRees from Internode Distances , 2015, bioRxiv.

[18]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[19]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[20]  Tandy J. Warnow,et al.  An experimental study of Quartets MaxCut and other supertree methods , 2010, Algorithms for Molecular Biology.

[21]  Cynthia A. Phillips,et al.  The Asymmetric Median Tree - A New Model for Building Consensus Trees , 1996, Discret. Appl. Math..

[22]  François Nicolas,et al.  Maximum agreement and compatible supertrees , 2004, J. Discrete Algorithms.

[23]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[24]  Tandy Warnow,et al.  Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation , 2017 .

[25]  Tandy J. Warnow,et al.  A Few Logs Suffice to Build (almost) All Trees: Part II , 1999, Theor. Comput. Sci..

[26]  W. Maddison Gene Trees in Species Trees , 1997 .

[27]  Alfred V. Aho,et al.  Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions , 1981, SIAM J. Comput..

[28]  A. Kupczok Split-based computation of majority-rule supertrees , 2011, BMC Evolutionary Biology.

[29]  Tandy Warnow,et al.  Advancing Divide-and-Conquer Phylogeny Estimation using Robinson-Foulds Supertrees , 2020, bioRxiv.

[30]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[31]  Charles Semple,et al.  Phylogenetic Supertrees , 2004, Computational Biology.

[32]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[33]  O. Bininda-Emonds Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life , 2004 .

[34]  P. Erdös,et al.  A few logs suffice to build (almost) all trees (l): part I , 1997 .

[35]  David Fernández-Baca,et al.  MulRF: a software package for phylogenetic analysis using multi-copy gene trees , 2015, Bioinform..

[36]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[37]  S. Böcker,et al.  Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm , 2017, Molecular biology and evolution.

[38]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[39]  Tandy J. Warnow,et al.  DACTAL: divide-and-conquer trees (almost) without alignments , 2012, Bioinform..

[40]  Tandy Warnow,et al.  Concatenation Analyses in the Presence of Incomplete Lineage Sorting , 2015, PLoS currents.

[41]  Tandy J. Warnow,et al.  MRL and SuperFine+MRL: new supertree methods , 2012, Algorithms for Molecular Biology.

[42]  Christophe Paul,et al.  Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees , 2016, Bulletin of Mathematical Biology.

[43]  Cynthia A. Phillips,et al.  The Asymmetric Median Tree - A New Model for Building Consensus Trees , 1996, Discret. Appl. Math..

[44]  Mike Steel,et al.  Maximum likelihood supertrees. , 2007, Systematic biology.

[45]  D. Posada,et al.  A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction , 2014, Systematic biology.

[46]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[47]  Tandy J. Warnow,et al.  Long‐Branch Attraction in Species Tree Estimation: Inconsistency of Partitioned Likelihood and Topology‐Based Summary Methods , 2018, Systematic biology.

[48]  V. Berry,et al.  Fixed-Parameter Tractability of the Maximum Agreement Supertree Problem , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[49]  Charles Semple,et al.  A supertree method for rooted trees , 2000, Discret. Appl. Math..

[50]  Tandy Warnow,et al.  Divide-and-Conquer Tree Estimation: Opportunities and Challenges , 2019, Bioinformatics and Phylogenetics.

[51]  Mark Wilkinson,et al.  Supertree Methods for Building the Tree of Life: Divide-and-Conquer Approaches to Large Phylogenetic Problems , 2006 .