Sub-channel CFD for nuclear fuel bundles

[1]  B. Han,et al.  Numerical study on the effect of grid mixing span in 2 × 1 spacer grid , 2018, Nuclear Engineering and Design.

[2]  Anil Kumar Sharma,et al.  A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions , 2018, Nuclear Engineering and Design.

[3]  Songwei Li,et al.  Validation of CFD analysis for rod bundle flow test with vaned spacer grids , 2017 .

[4]  Botros N. Hanna,et al.  Coarse-Grid Computational Fluid Dynamics (CG-CFD) Error Prediction using Machine Learning. , 2017, 1710.09105.

[5]  Goon Cherl Park,et al.  Application of CUPID for subchannel-scale thermal–hydraulic analysis of pressurized water reactor core under single-phase conditions , 2017 .

[6]  Kuniyoshi Takamatsu Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power , 2017 .

[7]  G. Su,et al.  Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method , 2017 .

[8]  Jan Vierendeels,et al.  Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors , 2017 .

[9]  Zhaofei Tian,et al.  Design of a CFD scheme using multiple RANS models for PWR , 2017 .

[10]  T. Bury Coupling of CFD and lumped parameter codes for thermal-hydraulic simulations of reactor containment , 2017 .

[11]  A. Class,et al.  Coarse grid CFD methodology: flux corrections for individual mesh cells and application to rod bundles , 2017 .

[12]  Rui Hu,et al.  A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors , 2016 .

[13]  P. Iadarola,et al.  1H NMR To Explore the Metabolome of Exhaled Breath Condensate in α1-Antitrypsin Deficient Patients: A Pilot Study. , 2016, Journal of proteome research.

[14]  Elia Merzari,et al.  CFD Investigation of Wire-Wrapped Fuel Rod Bundle Inner Subchannel Behavior and Dependency on Bundle Size , 2016 .

[15]  Yassin A. Hassan,et al.  Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle , 2016 .

[16]  Annalisa Manera,et al.  A novel domain overlapping strategy for the multiscale coupling of CFD with 1D system codes with applications to transient flows , 2016 .

[17]  Xu Cheng,et al.  An investigation of the effect of split-type mixing vane on extent of crossflow between subchannels through the fuel rod gaps , 2016 .

[18]  Elia Merzari,et al.  A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly , 2015 .

[19]  Konstantin Mikityuk,et al.  GeN-Foam: a novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors , 2015 .

[20]  Xue-Nong Chen,et al.  Coupling a CFD code with neutron kinetics and pin thermal models for nuclear reactor safety analyses , 2015 .

[21]  Norberto M. Nigro,et al.  1/3D modeling of the core coolant circuit of a PHWR nuclear power plant , 2015 .

[22]  Kazuo Ikeda CFD application to advanced design for high efficiency spacer grid , 2014 .

[23]  Roland Baviere,et al.  A first system/CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_U. Preliminary validation on the Phénix Reactor Natural Circulation Test , 2014 .

[24]  U. Bieder,et al.  LES analysis of the flow in a simplified PWR assembly with mixing grid , 2014, ICS 2014.

[25]  Masaaki Nakano,et al.  Study of the applicability of CFD calculation for HTTR reactor , 2014 .

[26]  Yuh-Ming Ferng,et al.  Investigating flow and heat transfer characteristics in a fuel bundle with split-vane pair grids by CFD methodology , 2014 .

[27]  J. Bailey,et al.  A CFD simulation of 5 × 5 rod bundles with split-type spacers , 2014 .

[28]  Yanhua Yang,et al.  Coolant distribution and mixing at the core inlet of PWR in a real geometry , 2013 .

[29]  E.M.J. Komen,et al.  Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis , 2013 .

[30]  E.M.J. Komen,et al.  Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis , 2013 .

[31]  Rui Hu,et al.  A momentum source model for wire-wrapped rod bundles—Concept, validation, and application , 2013 .

[32]  Dennis M. Sullivan,et al.  Three-Dimensional Simulation , 2013 .

[33]  Andreas G. Class,et al.  Simulating fuel assemblies with low resolution CFD approaches , 2012 .

[34]  A. Class,et al.  Anisotropic Porosity Formulation of the Coarse-Grid-CFD (CGCFD) , 2012 .

[35]  Chunkuan Shih,et al.  CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly , 2012 .

[36]  F. Ducros,et al.  CFD CALCULATIONS OF WIRE WRAPPED FUEL BUNDLES : MODE LING AND VALIDATION STRATEGIES , 2012 .

[37]  Kun Yuan,et al.  CFD analysis of PWR core top and reactor vessel upper plenum internal subdomain models , 2011 .

[38]  C. Moulinec,et al.  Optimizing Code_Saturne computations on Petascale systems , 2011 .

[39]  Yuh-Ming Ferng,et al.  Numerically simulating the thermal–hydraulic characteristics within the fuel rod bundle using CFD methodology , 2010 .

[40]  Ching-Chang Chieng,et al.  Heat transfer deterioration in a supercritical water channel , 2010 .

[41]  Kun Yuan,et al.  CFD Analysis of PWR Reactor Vessel Upper Plenum Sections: Flow Simulation in Control Rods Guide Tubes , 2010 .

[42]  P. Moussou,et al.  CFD Estimation of the Flow-Induced Vibrations of a Fuel Rod Downstream a Mixing Grid , 2009 .

[43]  Nolan Anderson,et al.  Analysis of the hot gas flow in the outlet plenum of the very high temperature reactor using coupled RELAP5-3D system code and a CFD code , 2008 .

[44]  L. J. Lommers,et al.  Three-dimensional simulation of the coupled convective, conductive, and radiative heat transfer during decay heat removal in an HTR , 2007 .

[45]  Andrew Siegel,et al.  Large eddy simulation of wire-wrapped fuel pins I: Hydrodynamics in a periodic array. , 2007 .

[46]  Gábor Házi,et al.  On turbulence models for rod bundle flow computations , 2005 .

[47]  Yong-Bum Lee,et al.  Modeling of Flow Blockage in a Liquid Metal-Cooled Reactor Subassembly with a Subchannel Analysis Code , 2005 .

[48]  Kwang-Yong Kim,et al.  Three-Dimensional Analysis of Turbulent Heat Transfer and Flow through Mixing Vane in A Subchannel of Nuclear Reactor , 2003 .

[49]  George Yadigaroglu,et al.  Trends and needs in experimentation and numerical simulation for LWR safety , 2003 .

[50]  Z. Karouta,et al.  3-D flow analyses for design of nuclear fuel spacer , 1995 .

[51]  Washington,et al.  RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1 , 1995 .

[52]  D. Bestion,et al.  The physical closure laws in the CATHARE code , 1990 .

[53]  Ina Ruck,et al.  USA , 1969, The Lancet.

[54]  D. R. Liles,et al.  TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis , 1986 .

[55]  William T. Sha An overview on rod-bundle thermal-hydraulic analysis , 1980 .

[56]  J. M. Bates,et al.  Effects of sleeve blockages on axial velocity and intensity of turbulence in an unheated 7 x 7 rod bundle. [PWR] , 1976 .

[57]  R. A. Markley,et al.  Open duct cooling-concept for the radial blanket region of a Fast Breeder reactor , 1971 .

[58]  D. S. Rowe CROSS-FLOW MIXING BETWEEN PARALLEL FLOW CHANNELS DURING BOILING. PART I. COBRA: COMPUTER PROGRAM FOR COOLANT BOILING IN ROD ARRAYS. , 1967 .

[59]  F. Dittus,et al.  Heat transfer in automobile radiators of the tubular type , 1930 .