Stochastic load balancing and related problems

We study the problems of makespan minimization (load balancing), knapsack, and bin packing when the jobs have stochastic processing requirements or sizes. If the jobs are all Poisson, we present a two approximation for the first problem using Graham's rule, and observe that polynomial time approximation schemes can be obtained for the last two problems. If the jobs are all exponential, we present polynomial time approximation schemes for all three problems. We also obtain quasi-polynomial time approximation schemes for the last two problems if the jobs are Bernoulli variables.

[1]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[2]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: practical and theoretical results , 1987 .

[3]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[4]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[5]  Tapani Lehtonen Scheduling jobs with exponential processing times on parallel machines , 1988 .

[6]  R. Weber SCHEDULING JOBS WITH STOCHASTIC PROCESSING REQUIREMENTS , 1982 .

[7]  G. Weiss,et al.  Approximation results in parallel machnies stochastic scheduling , 1991 .

[8]  Gideon Weiss,et al.  Turnpike Optimality of Smith's Rule in Parallel Machines Stochastic Scheduling , 1992, Math. Oper. Res..

[9]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[10]  Yuval Rabani,et al.  Allocating bandwidth for bursty connections , 1997, STOC '97.

[11]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[12]  Sanjeev Khanna,et al.  A PTAS for the multiple knapsack problem , 2000, SODA '00.

[13]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[14]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[15]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.