Domain based classification

The majority of traditional classification ru les minimizing the expected probability of error (0-1 loss) are inappropriate if the class probability distributions are ill-defined or impossible to estimate. We argue that in such cases class domains should be used instead of class distributions or densities to construct a reliable decision function. Proposals are presented for some evaluation criteria and classifier learning schemes, illustrated by an example.

[1]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[2]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[3]  Sanjeev R. Kulkarni,et al.  On probably correct classification of concepts , 1993, COLT '93.

[4]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[5]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[6]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[7]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[8]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[9]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[10]  David Kramer,et al.  It is probably correct , 2008 .

[11]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[12]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[13]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.