LUMIO: A CubeSat for observing and characterizing micro-meteoroid impacts on the Lunar far side

[1]  Hajime Yano,et al.  Mission to Earth–Moon Lagrange Point by a 6U CubeSat: EQUULEUS , 2020, IEEE Aerospace and Electronic Systems Magazine.

[2]  D. Labate,et al.  Phase a Design of the LUMIO Spacecraft: a Cubesat for Observing and Characterizing Micro-Meteoroid Impacts on the Lunar far Side , 2020 .

[3]  Francesco Topputo,et al.  LUMIO: An Autonomous CubeSat for Lunar Exploration , 2019, Space Operations: Inspiring Humankind's Future.

[4]  Anton Ivanov,et al.  LUMIO: a Cubesat at Earth-Moon L2 , 2018 .

[5]  D. Labate,et al.  System Design of LUMIO: a CubeSat at Earth-Moon l2 for Observing Lunar Meteoroid Impacts , 2018 .

[6]  M. Horányi,et al.  Impacts of fast meteoroids and a plasma–dust cloud over the lunar surface , 2017 .

[7]  P. Thomas,et al.  Quantifying crater production and regolith overturn on the Moon with temporal imaging , 2016, Nature.

[8]  A. Zakharov,et al.  Impacts of fast meteoroids and the separation of dust particles from the surface of the Moon , 2016 .

[9]  Detlef Koschny,et al.  NELIOTA: ESA's new NEO lunar impact monitoring project with the 1.2m telescope at the National Observatory of Athens , 2015, Astronomical Telescopes + Instrumentation.

[10]  Kai Wünnemann,et al.  The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques , 2012 .

[11]  Robert Suggs,et al.  The flux of kilogram-sized meteoroids from lunar impact monitoring , 2008, 1404.6458.

[12]  Robert M. Suggs,et al.  The NASA Lunar Impact Monitoring Program , 2008 .

[13]  J. Ortiz,et al.  Detection of sporadic impact flashes on the Moon : Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates , 2006 .

[14]  J. L. Ortiz,et al.  Luminous Efficiency in Hypervelocity Impacts from the 1999 Lunar Leonids , 2000 .

[15]  Douglas O. ReVelle,et al.  Meteor Phenomena and Bodies , 1998 .