Analysis and Synchronization of the Hyperchaotic Yujun Systems via Sliding Mode Control

In this paper, we deploy sliding mode control (SMC) to derive new results for the global chaos synchronization of identical hyperchaotic Yujun systems (2010). The synchronization results derived in this paper are established using the Lyapunov stability theory. Numerical simulations have been provided to illustrate the sliding mode control results derived in this paper for the complete synchronization of identical hyperchaotic Yujun systems.

[1]  Morton Nadler,et al.  The stability of motion , 1961 .

[2]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[3]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[4]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[5]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  S. Bowong Adaptive synchronization between two different chaotic dynamical systems , 2007 .

[8]  Kim-Fung Man,et al.  Online Secure Chatting System Using Discrete Chaotic Map , 2004, Int. J. Bifurc. Chaos.

[9]  Zhang Huaguang,et al.  A new hyperchaotic system and its circuit implementation , 2010 .

[10]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[11]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[12]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[13]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[14]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[15]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[16]  Jun-an Lu,et al.  Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system , 2008 .

[17]  V. Sundarapandian,et al.  Global Chaos Synchronization of Hyperchaotic Lorenz and Hyperchaotic Chen Systems by Adaptive Control , 2011 .

[18]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[19]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[20]  M. Lakshmanan,et al.  SECURE COMMUNICATION USING A COMPOUND SIGNAL USING SAMPLED-DATA FEEDBACK , 2003 .

[21]  Vadim I. Utkin,et al.  Sliding mode control design principles and applications to electric drives , 1993, IEEE Trans. Ind. Electron..

[22]  L. Chua,et al.  Generalized synchronization of chaos via linear transformations , 1999 .

[23]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[24]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[25]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[26]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[27]  V. Sundarapandian,et al.  Global Chaos Synchronization of the Pehlivan Systems by Sliding Mode Control , 2011 .

[28]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .